Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012336

ABSTRACT

Dermacozines, the secondary metabolites of the Mariana Trench sediment bacterium Dermacoccus abyssi MT1.1T, were studied using cyclic voltammetry (CV), electron paramagnetic resonance (EPR), furthermore literature and own experimental UV-Vis spectroscopic data. With those measurements, we determined experimentally the positions of the HOMO, which shifts towards more positive potentials, and the constant LUMO on the standard hydrogen electrode scale, while the HOMO-LUMO gap gets deeper, respectively. The HOMO energies of dermacozines experimentally were proven to be water oxidising. EPR spectroscopy demonstrated the formation of semiquinone radicals in the case of dermacozines E and O upon irradiation with visible light corresponding to the absorption maxima (AM) of the chromophores. Our findings suggest that the dermacozines may assist the strain by maintaining redox homeostasis through its respiratory chain.

2.
Mar Drugs ; 19(6)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205180

ABSTRACT

Three dermacozines, dermacozines N-P (1-3), were isolated from the piezotolerant Actinomycete strain Dermacoccus abyssi MT 1.1T, which was isolated from a Mariana Trench sediment in 2006. Herein, we report the elucidation of their structures using a combination of 1D/2D NMR, LC-HRESI-MSn, UV-Visible, and IR spectroscopy. Further confirmation of the structures was achieved through the analysis of data from density functional theory (DFT)-UV-Visible spectral calculations and statistical analysis such as two tailed t-test, linear regression-, and multiple linear regression analysis applied to either solely experimental or to experimental and calculated 13C-NMR chemical shift data. Dermacozine N (1) bears a novel linear pentacyclic phenoxazine framework that has never been reported as a natural product. Dermacozine O (2) is a constitutional isomer of the known dermacozine F while dermacozine P (3) is 8-benzoyl-6-carbamoylphenazine-1-carboxylic acid. Dermacozine N (1) is unique among phenoxazines due to its near infrared (NIR) absorption maxima, which would make this compound an excellent candidate for research in biosensing chemistry, photodynamic therapy (PDT), opto-electronic applications, and metabolic mapping at the cellular level. Furthermore, dermacozine N (1) possesses weak cytotoxic activity against melanoma (A2058) and hepatocellular carcinoma cells (HepG2) with IC50 values of 51 and 38 µM, respectively.


Subject(s)
Actinobacteria/chemistry , Geologic Sediments/microbiology , Phenazines/chemistry , Phenazines/isolation & purification , Photochemical Processes , Light , Magnetic Resonance Spectroscopy , Regression Analysis , Spectrophotometry/methods
3.
Mar Drugs ; 18(3)2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32106586

ABSTRACT

Dermacoccus abyssi strain MT1.1T is a piezotolerant actinobacterium that was isolated from Mariana Trench sediment collected at a depth of 10898 m. The organism was found to produce ten dermacozines (A‒J) that belonged to a new phenazine family and which displayed various biological activities such as radical scavenging and cytotoxicity. Here, we report on the isolation and identification of a new dermacozine compound, dermacozine M, the chemical structure of which was determined using 1D and 2D-NMR, and high resolution MS. A whole genome sequence of the strain contained six secondary metabolite-biosynthetic gene clusters (BGCs), including one responsible for the biosynthesis of a family of phenazine compounds. A pathway leading to the biosynthesis of dermacozines is proposed. Bioinformatic analyses of key stress-related genes provide an insight into how the organism adapted to the environmental conditions that prevail in the deep-sea.


Subject(s)
Actinobacteria/genetics , Acclimatization , Actinobacteria/isolation & purification , Actinobacteria/metabolism , Animals , Geologic Sediments/microbiology , Oceans and Seas , Phenazines/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Whole Genome Sequencing
4.
Nature ; 475(7357): 484-8, 2011 Jul 27.
Article in English | MEDLINE | ID: mdl-21796208

ABSTRACT

Physical laws are believed to be invariant under the combined transformations of charge, parity and time reversal (CPT symmetry). This implies that an antimatter particle has exactly the same mass and absolute value of charge as its particle counterpart. Metastable antiprotonic helium (pHe(+)) is a three-body atom consisting of a normal helium nucleus, an electron in its ground state and an antiproton (p) occupying a Rydberg state with high principal and angular momentum quantum numbers, respectively n and l, such that n ≈ l + 1 ≈ 38. These atoms are amenable to precision laser spectroscopy, the results of which can in principle be used to determine the antiproton-to-electron mass ratio and to constrain the equality between the antiproton and proton charges and masses. Here we report two-photon spectroscopy of antiprotonic helium, in which p(3)He(+) and p(4)He(+) isotopes are irradiated by two counter-propagating laser beams. This excites nonlinear, two-photon transitions of the antiproton of the type (n, l) → (n - 2, l - 2) at deep-ultraviolet wavelengths (λ = 139.8, 193.0 and 197.0 nm), which partly cancel the Doppler broadening of the laser resonance caused by the thermal motion of the atoms. The resulting narrow spectral lines allowed us to measure three transition frequencies with fractional precisions of 2.3-5 parts in 10(9). By comparing the results with three-body quantum electrodynamics calculations, we derived an antiproton-to-electron mass ratio of 1,836.1526736(23), where the parenthetical error represents one standard deviation. This agrees with the proton-to-electron value known to a similar precision.

SELECTION OF CITATIONS
SEARCH DETAIL
...