Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 217: 15-19, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28720252

ABSTRACT

The cryptochrome - photolyase family (CPF) consists of homologous flavoproteins having completely different functions involving DNA repair, circadian rhythm and/or photoreception. From the original photolyases, working either as (6-4) or cyclobutane pyrimidine dimer photolyases, the animal- and plant-type cryptochromes, respectively, evolved and also the more intermediate DASH cryptochromes. Whereas animal cryptochromes work mostly in clock-related functions, plant cryptochromes are also directly involved in developmental processes such as hypocotyl elongation or flower induction. In diatoms, all types of cryptochromes and photolyases were predicted from genome sequences. However, up to now only two proteins have been characterised in more detail, CPF1 and CryP. CPF1 is related to animal-type cryptochromes, but works as a (6-4) photolyase in addition to having photoreceptor functions. It was shown to interact with the CLOCK:Bmal1 heterodimer in a heterologous system, and thus is probably involved in clock-related processes. Moreover, CPF1 directly influences transcription. The latter was also true for CryP, which is a cryptochrome distantly related to plant-type cryptochromes. In addition, CryP influences light-harvesting protein accumulation. For all diatom cryptochromes, down-stream signalling has to proceed via interaction partners different from the classical proteins involved in cryptochrome signalling in higher plants, because these candidates are missing in diatoms.


Subject(s)
Cryptochromes/metabolism , Deoxyribodipyrimidine Photo-Lyase/metabolism , Diatoms/metabolism , Circadian Rhythm , Cryptochromes/physiology , DNA Repair , Deoxyribodipyrimidine Photo-Lyase/physiology , Diatoms/physiology , Phylogeny
2.
FEBS J ; 281(9): 2299-311, 2014 May.
Article in English | MEDLINE | ID: mdl-24628952

ABSTRACT

Diatoms possess several genes for proteins of the cryptochrome/photolyase family. A typical sequence for a plant cryptochrome was not found in our analysis of the Phaeodactylum tricornutum genome, but one protein grouped with higher plant and green algal cryptochromes. This protein, CryP, binds FAD and 5,10-methenyltetrahydrofolate, according to our spectroscopic studies on heterologously expressed protein. 5,10-Methenyltetrahydrofolate binding is a feature common to both cyclobutane pyrimidine dimer photolyases and DASH cryptochromes. In recombinant CryP, however, the FAD chromophore was present in its neutral radical state and had a red-shifted absorption maximum at 637 nm, which is more characteristic for a DASH cryptochrome than a cyclobutane pyrimidine dimer photolyase. Upon illumination with blue light, the fully reduced state of FAD was formed in the presence of reductant. Expression of CryP was silenced by antisense approaches, and the resulting cell lines showed increased levels of proteins of light-harvesting complexes, the Lhcf proteins, in vivo. In contrast, the levels of proteins active in light protection, the Lhcx proteins, were reduced. Thus, CryP cannot be directly grouped with known members of the cryptochrome/photolyase family. Of all P. tricornutum proteins, it is the most similar in sequence to a plant cryptochrome, and is involved in the regulation of light-harvesting protein expression, but shows spectroscopic features and a chromophore composition that are most typical of a DASH cryptochrome.


Subject(s)
Cryptochromes/metabolism , Diatoms/metabolism , Light-Harvesting Protein Complexes/metabolism , Cryptochromes/classification , Phylogeny , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
3.
J Exp Bot ; 63(10): 3673-81, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22442408

ABSTRACT

Analysis of photosystem I (PSI) complexes from Cyclotella meneghiniana cultured under different growth conditions led to the identification of three groups of antenna proteins, having molecular weights of around 19, 18, and 17 kDa. The 19-kDa proteins have earlier been demonstrated to be more peripherally bound to PSI, and their amount in the PSI complexes was significantly reduced when the iron supply in the growth medium was lowered. This polypeptide was almost missing, and thus the total amount of fucoxanthin-chlorophyll proteins (Fcps) bound to PSI was reduced as well. When treating cells with high light in addition, no further changes in antenna polypeptide composition were detected. Xanthophyll cycle pigments were found to be bound to all Fcps of PSI. However, PSI of high light cultures had a significantly higher diatoxanthin to diadinoxanthin ratio, which is assumed to protect against a surplus of excitation energy. PSI complexes from the double-stressed cultures (high light plus reduced iron supply) were slightly more sensitive against destruction by the detergent treatment. This could be seen as a higher 674-nm emission at 77 K in comparison to the PSI complexes isolated from other growth conditions. Two major emission bands of the Fcps bound to PSI at 77 K could be identified, whereby chlorophyll a fluorescing at 697 nm was more strongly coupled to the PSI core than those fluorescing at 685 nm. Thus, the build up of the PSI antenna of several Fcp components enables variable reactions to several stress factors commonly experienced by the diatoms in vivo, in particular diatoxanthin enrichment under high light and reduction of antenna size under reduced iron conditions.


Subject(s)
Diatoms/metabolism , Photosystem I Protein Complex/metabolism , Diatoms/chemistry , Diatoms/radiation effects , Light , Molecular Weight , Photosystem I Protein Complex/chemistry , Xanthophylls/metabolism
4.
J Phycol ; 47(6): 1266-73, 2011 Dec.
Article in English | MEDLINE | ID: mdl-27020350

ABSTRACT

The diatom Cyclotella meneghiniana Kütz. (SAG 1020-a) was cultured under high-light (HL) and low-light (LL) conditions with either high (12 µM) or low (1 µM) iron in the media. Changes in cell morphology, especially cell volume and chloroplast size, were observed in cells grown under low iron. In contrast, HL had a much stronger influence on the photosynthetic apparatus. PSII function was unimpaired under lowered iron supply, but its quantum efficiency and reoxidation rate were reduced under HL conditions. As reported before, HL induced changes in antenna polypeptide composition. Especially the amount of Fcp6, an antenna protein related to LI818 and known to be involved in photoprotection, was increased under HL but was significantly reduced under lowered iron. The diatoxanthin content correlated with the amount of Fcp6 in isolated FCPa antenna complexes and was thus increased under HL and reduced under low iron as well. While the diatoxanthin (Dt) content of whole cells was enhanced under HL, no decrease was observed under lowered iron supply, ruling out the possibility that the decreased amounts in FCPa were due to a hampered diadinoxanthin de-epoxidase activity under these conditions. Thus, diatoxanthin not bound to FCPa has to be responsible for protection under the slight reduction in iron supply used here.

SELECTION OF CITATIONS
SEARCH DETAIL
...