Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomaterials ; 25(6): 949-55, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14615158

ABSTRACT

Composites which comprise a bioactive filler and ductile polymer matrix are desirable as implant materials since both their biological and mechanical properties can be tailored for a given application. In the present study three-point bending was used to characterise biomedical materials composed of glass-ceramic apatite-wollastonite (A-W) particulate reinforced polyethylene (PE) (denoted as AWPEX). The effects of filler volume fraction, varied from 10 to 50 vol%, and average particle size, 4.4 and 6.7 microm, on the bending strength, yield strength, mode of fracture, Young's modulus and strain to failure were investigated. HAPEX, a commercially used composite of hydroxyapatite and polyethylene, with a 40 vol% filler content, was used for comparison. Increasing the filler content caused an increase in Young's modulus, yield strength and bending strength, and a decreased strain to failure. When filler particle size was increased, the Young's modulus, yield and bending strengths were found to be slightly reduced. A transition in fracture behaviour from ductile to brittle behaviour was observed in samples containing between 30 and 40 vol% filler.


Subject(s)
Apatites/chemistry , Bone Substitutes/chemistry , Ceramics/chemistry , Manufactured Materials/analysis , Polyethylene/chemistry , Silicic Acid/chemistry , Apatites/chemical synthesis , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Bone Substitutes/chemical synthesis , Ceramics/chemical synthesis , Elasticity , Materials Testing , Mechanics , Silicic Acid/chemical synthesis , Surface Properties , Tensile Strength
2.
J Biomed Mater Res A ; 67(3): 952-9, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14613244

ABSTRACT

Bioactive glass-ceramic apatite-wollastonite (A-W) has been incorporated into polyethylene in particulate form to create new bioactive composites for potential maxillofacial applications. The effects of varying the volume fraction of glass-ceramic A-W filler and the glass-ceramic A-W particle size were investigated by measuring the bonding strength of the bonelike apatite layer formed on the surface of glass-ceramic A-W-polyethylene composites. The bonding strength was evaluated via a modified ASTM C-333 standard in which a tensile stress was applied to the substrate and the strength of the bioactive layer was compared with that formed on commercially available hydroxyapatite-polyethylene composite samples, HAPEX. The composites demonstrated greater bonding strength with increased filler content and reduced filler particle size (maximum 6.9 +/- 0.5 MPa) and a marginally greater bonding strength as compared with HAPEX (2.8 +/- 0.5 MPa), when glass-ceramic A-W-polyethylene composite samples with the same filler content were tested. The higher bonding strength of the apatite layer formed on the A-W-polyethylene composite samples suggests that, in addition to maxillofacial applications, these composites might also be utilized in applications involving higher levels of load bearing.


Subject(s)
Bone Substitutes/chemistry , Composite Resins/chemical synthesis , Adhesiveness , Biomechanical Phenomena , Calcium Compounds , Ceramics , Glass , Materials Testing , Particle Size , Polyethylene , Silicates
3.
J Mater Sci Mater Med ; 14(6): 489-95, 2003 Jun.
Article in English | MEDLINE | ID: mdl-15348432

ABSTRACT

The bioactivity of a range of glass-ceramic apatite-wollastonite (A-W) - polyethylene composites (AWPEXs) with glass-ceramic A-W volume percentages ranging from 10 to 50, has been investigated in an acellular simulated body fluid (SBF) with ion concentrations similar to those of human blood plasma. The formation of a biologically active apatite layer on the composite surface after immersion in SBF was demonstrated by thin-film X-ray diffraction (TF-XRD) and field-emission scanning electron microscopy (FE-SEM). An apatite layer was formed on all the composites, with the rate of formation increasing with an increase in glass-ceramic A-W percentage. For composites with glass-ceramic A-W filler contents >or=30 vol %, the apatite layer was formed within 12 h of immersion, which is a comparable time for apatite formation on monolithic glass-ceramic A-W. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) demonstrated that the apatite formation on AWPEX samples with 50 vol % filler content occurred in a manner similar to that seen on pure glass-ceramic A-W, in that the calcium, silicon, and magnesium ion concentrations increased and, conversely, a decrease was observed in the phosphate ion concentration. These results indicate that a suitable in vitro response was achieved on a composite incorporating particulate glass-ceramic A-W with a particularly favorable response being observed on the AWPEX sample with 50 vol % filler content.

SELECTION OF CITATIONS
SEARCH DETAIL
...