Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687181

ABSTRACT

BACKGROUND: Within a year of the SARS-CoV-2 pandemic, vaccines inducing a robust humoral and cellular immune response were implemented worldwide. However, emergence of novel variants and waning vaccine induced immunity led to implementation of additional vaccine boosters. METHODS: This prospective study evaluated the temporal profile of cellular and serological responses in a cohort of 639 SARS-CoV-2 vaccinated participants, of whom a large proportion experienced a SARS-CoV-2 infection. All participants were infection naïve at the time of their first vaccine dose. Proportions of SARS-CoV-2 Spike-specific T cells were determined after each vaccine dose using the Activation Induced Markers (AIM) assay, while levels of circulating SARS-CoV-2 antibodies were determined by the Meso Scale serology assay. RESULTS: We found a significant increase in SARS-CoV-2 Spike-specific CD4+ and CD8+ T cell responses following the third dose of a SARS-CoV-2 mRNA vaccine as well as enhanced CD8+ T cell responses after the fourth dose. Further, increased age was associated with a poorer response. Finally, we observed that SARS-CoV-2 infection boosts both the cellular and humoral immune response, relative to vaccine-induced immunity alone. CONCLUSION: Our findings highlight the boosting effect on T cell immunity of repeated vaccine administration. The combination of multiple vaccine doses and SARS-CoV-2 infections maintains population T cell immunity although with reduced levels in the elderly.

2.
PLoS One ; 18(9): e0291131, 2023.
Article in English | MEDLINE | ID: mdl-37729215

ABSTRACT

Despite development of effective SARS-CoV-2 vaccines, a sub-group of vaccine non-responders depends on therapeutic antibodies or small-molecule drugs in cases of severe disease. However, perpetual viral evolution has required continuous efficacy monitoring as well as exploration of new therapeutic antibodies, to circumvent resistance mutations arising in the viral population. We performed SARS-CoV-2-specific B cell sorting and subsequent single-cell sequencing on material from 15 SARS-CoV-2 convalescent participants. Through screening of 455 monoclonal antibodies for SARS-CoV-2 variant binding and virus neutralization, we identified a cluster of activated B cells highly enriched for SARS-CoV-2 neutralizing antibodies. Epitope binning and Cryo-EM structure analysis identified the majority of neutralizing antibodies having epitopes overlapping with the ACE2 receptor binding motif (class 1 binders). Extensive functional antibody characterization identified two potent neutralizing antibodies, one retaining SARS-CoV-1 neutralizing capability, while both bind major common variants of concern and display prophylactic efficacy in vivo. The transcriptomic signature of activated B cells harboring broadly binding neutralizing antibodies with therapeutic potential identified here, may be a guide in future efforts of rapid therapeutic antibody discovery.


Subject(s)
Blood Group Antigens , COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines , Antibodies, Viral , Antibodies, Neutralizing , Epitopes
3.
Commun Med (Lond) ; 3(1): 58, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095240

ABSTRACT

BACKGROUND: Older age and chronic disease are important risk factors for developing severe COVID-19. At population level, vaccine-induced immunity substantially reduces the risk of severe COVID-19 disease and hospitalization. However, the relative impact of humoral and cellular immunity on protection from breakthrough infection and severe disease is not fully understood. METHODS: In a study cohort of 655 primarily older study participants (median of 63 years (IQR: 51-72)), we determined serum levels of Spike IgG antibodies using a Multiantigen Serological Assay and quantified the frequency of SARS-CoV-2 Spike-specific CD4 + and CD8 + T cells using activation induced marker assay. This enabled characterization of suboptimal vaccine-induced cellular immunity. The risk factors of being a cellular hypo responder were assessed using logistic regression. Further follow-up of study participants allowed for an evaluation of the impact of T cell immunity on breakthrough infections. RESULTS: We show reduced serological immunity and frequency of CD4 + Spike-specific T cells in the oldest age group (≥75 years) and higher Charlson Comorbidity Index (CCI) categories. Male sex, age group ≥75 years, and CCI > 0 is associated with an increased likelihood of being a cellular hypo-responder while vaccine type is a significant risk factor. Assessing breakthrough infections, no protective effect of T cell immunity is identified. CONCLUSIONS: SARS-CoV-2 Spike-specific immune responses in both the cellular and serological compartment of the adaptive immune system increase with each vaccine dose and are progressively lower with older age and higher prevalence of comorbidities. The findings contribute to the understanding of the vaccine response in individuals with increased risk of severe COVID-19 disease and hospitalization.


Vaccination has proven very effective in protecting against severe disease and hospitalization of people with COVID-19, the disease caused by SARS-CoV-2. It is still unclear, however, how the different components of the immune system respond to SARS-CoV-2 vaccination and protect from infection and severe disease. Two of the most predominant components of the immune system are specialized proteins and cells. The proteins circulate in the blood and help clear the virus by binding to it, while the cells either kill the virus or help other cells to produce more antibodies. Here, we examined the response of these two components to the SARS-CoV-2 vaccine in 655 Danish citizens. The response of both components was lower in people over 75 years old and with other diseases. These findings help in understanding the immune responses following SARS-CoV-2 vaccination in people at increased risk of severe symptoms of COVID-19.

4.
Viruses ; 15(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36680242

ABSTRACT

Adoptive immunotherapy using chimeric antigen receptor (CAR) T cells has been highly successful in treating B cell malignancies and holds great potential as a curative strategy for HIV infection. Recent advances in the use of anti-HIV broadly neutralizing antibodies (bNAbs) have provided vital information for optimal antigen targeting of CAR T cells. However, CD4+ CAR T cells are susceptible to HIV infection, limiting their therapeutic potential. In the current study, we engineered HIV-resistant CAR T cells using CRISPR/Cas9-mediated integration of a CAR cassette into the CCR5 locus. We used a single chain variable fragment (scFv) of the clinically potent bNAb 10-1074 as the antigen-targeting domain in our anti-HIV CAR T cells. Our anti-HIV CAR T cells showed specific lysis of HIV-infected cells in vitro. In a PBMC humanized mouse model of HIV infection, the anti-HIV CAR T cells expanded and transiently limited HIV infection. In conclusion, this study provides proof-of-concept for developing HIV-resistant CAR T cells using CRISPR/Cas9 targeted integration.


Subject(s)
HIV Infections , HIV-1 , Mice , Animals , CRISPR-Cas Systems , Leukocytes, Mononuclear/metabolism , HIV Antibodies , T-Lymphocytes
5.
Nat Commun ; 13(1): 4466, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915081

ABSTRACT

SARS-CoV-2 variants of concern have continuously evolved and may erode vaccine induced immunity. In this observational cohort study, we determine the risk of breakthrough infection in a fully vaccinated cohort. SARS-CoV-2 anti-spike IgG levels were measured before first SARS-CoV-2 vaccination and at day 21-28, 90 and 180, as well as after booster vaccination. Breakthrough infections were captured through the Danish National Microbiology database. incidence rate ratio (IRR) for breakthrough infection at time-updated anti-spike IgG levels was determined using Poisson regression. Among 6076 participants, 127 and 364 breakthrough infections due to Delta and Omicron variants were observed. IRR was 0.29 (95% CI 0.15-0.56) for breakthrough infection with the Delta variant, comparing the highest and lowest quintiles of anti-spike IgG. For Omicron, no significant differences in IRR were observed. These results suggest that quantitative level of anti-spike IgG have limited impact on the risk of breakthrough infection with Omicron.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunoglobulin G
6.
Elife ; 92020 04 16.
Article in English | MEDLINE | ID: mdl-32293560

ABSTRACT

Human patients carrying PAPP-A2 inactivating mutations have low bone mineral density. The underlying mechanisms for this reduced calcification are poorly understood. Using a zebrafish model, we report that Papp-aa regulates bone calcification by promoting Ca2+-transporting epithelial cell (ionocyte) quiescence-proliferation transition. Ionocytes, which are normally quiescent, re-enter the cell cycle under low [Ca2+] stress. Genetic deletion of Papp-aa, but not the closely related Papp-ab, abolished ionocyte proliferation and reduced calcified bone mass. Loss of Papp-aa expression or activity resulted in diminished IGF1 receptor-Akt-Tor signaling in ionocytes. Under low Ca2+ stress, Papp-aa cleaved Igfbp5a. Under normal conditions, however, Papp-aa proteinase activity was suppressed and IGFs were sequestered in the IGF/Igfbp complex. Pharmacological disruption of the IGF/Igfbp complex or adding free IGF1 activated IGF signaling and promoted ionocyte proliferation. These findings suggest that Papp-aa-mediated local Igfbp5a cleavage functions as a [Ca2+]-regulated molecular switch linking IGF signaling to bone calcification by stimulating epithelial cell quiescence-proliferation transition under low Ca2+ stress.


Subject(s)
Calcification, Physiologic/physiology , Epithelial Cells/metabolism , Insulin-Like Growth Factor Binding Protein 5/metabolism , Metalloendopeptidases/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Proliferation/physiology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...