Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cell Rep Med ; : 101629, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959886

ABSTRACT

Weight loss is often followed by weight regain. Characterizing endocrine alterations accompanying weight reduction and regain may disentangle the complex biology of weight-loss maintenance. Here, we profile energy-balance-regulating metabokines and sphingolipids in adults with obesity undergoing an initial low-calorie diet-induced weight loss and a subsequent weight-loss maintenance phase with exercise, glucagon-like peptide-1 (GLP-1) analog therapy, both combined, or placebo. We show that circulating growth differentiation factor 15 (GDF15) and C16:0-C18:0 ceramides transiently increase upon initial diet-induced weight loss. Conversely, circulating fibroblast growth factor 21 (FGF21) is downregulated following weight-loss maintenance with combined exercise and GLP-1 analog therapy, coinciding with increased adiponectin, decreased leptin, and overall decrements in ceramide and sphingosine-1-phosphate levels. Subgroup analyses reveal differential alterations in FGF21-adiponectin-leptin-sphingolipids between weight maintainers and regainers. Clinically, cardiometabolic health outcomes associate with selective metabokine-sphingolipid remodeling signatures. Collectively, our findings indicate distinct FGF21, GDF15, and ceramide responses to diverse phases of weight change and suggest that weight-loss maintenance involves alterations within the metabokine-sphingolipid axis.

2.
Obesity (Silver Spring) ; 31(4): 977-989, 2023 04.
Article in English | MEDLINE | ID: mdl-36942420

ABSTRACT

OBJECTIVE: The aim of this study was to investigate glucose tolerance, glucagon response, and beta cell function during a 1-year maintenance period with either exercise, the glucagon-like peptide-1 receptor agonist liraglutide, or the combination after diet-induced weight loss. METHODS: In this randomized placebo-controlled trial, adults with obesity (BMI: 32-43 kg/m2 ) without diabetes underwent an 8-week low-calorie diet (800 kcal/d) and were randomized to 52 weeks of aerobic exercise, liraglutide 3.0 mg/d, exercise and liraglutide combined, or placebo. Change in glucose and glucagon response to a 3-hour mixed meal test and disposition index, as a measure of beta cell function, were measured. RESULTS: A total of 195 participants were randomized. After 1 year of treatment, the combination group had decreased postprandial glucose response by -9% (95% CI: -14% to -3%; p = 0.002), improved beta cell function by 49% (95% CI: 16% to 93%; p = 0.002), and decreased glucagon response by -18% (95% CI: -34% to -3%; p = 0.024) compared with placebo. Compared with placebo, liraglutide alone improved postprandial glucose response by -7% (95% CI: -12% to -1%; p = 0.018), but not beta cell function or glucagon. Exercise alone had similar postprandial glucose response, beta cell function, and glucagon response as placebo. CONCLUSIONS: Only the combination of exercise and liraglutide improved glucose tolerance, beta cell function, and glucagon responses after weight loss.


Subject(s)
Diabetes Mellitus, Type 2 , Liraglutide , Adult , Humans , Liraglutide/pharmacology , Liraglutide/therapeutic use , Glucagon , Hypoglycemic Agents/therapeutic use , Weight Loss , Exercise , Glucose , Double-Blind Method , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy
3.
Cardiovasc Diabetol ; 22(1): 41, 2023 02 25.
Article in English | MEDLINE | ID: mdl-36841762

ABSTRACT

BACKGROUND: Identifying and reducing cardiometabolic risks driven by obesity remains a healthcare challenge. The metabolic syndrome is associated with abdominal obesity and inflammation and is predictive of long-term risk of developing type 2 diabetes and cardiovascular disease in otherwise healthy individuals living with obesity. Therefore, we investigated the effects of adherent exercise, a glucagon-like peptide 1 receptor agonist (GLP-1 RA), or the combination on severity of metabolic syndrome, abdominal obesity, and inflammation following weight loss. METHODS: This was a randomized, double-blinded, placebo-controlled trial. During an 8-week low-calorie diet (800 kcal/day), 195 adults with obesity and without diabetes lost 12% in body weight. Participants were then evenly randomized to four arms of one-year treatment with: placebo, moderate-to-vigorous exercise (minimum of 150 min/week of moderate-intensity or 75 min/week of vigorous-intensity aerobic physical activity or an equivalent combination of both), the GLP-1 RA liraglutide 3.0 mg/day, or a combination (exercise + liraglutide). A total of 166 participants completed the trial. We assessed the prespecified secondary outcome metabolic syndrome severity z-score (MetS-Z), abdominal obesity (estimated as android fat via dual-energy X-ray absorptiometry), and inflammation marker high-sensitivity C-reactive protein (hsCRP). Statistical analysis was performed on 130 participants adherent to the study interventions (per-protocol population) using a mixed linear model. RESULTS: The diet-induced weight loss decreased the severity of MetS-Z from 0.57 to 0.06, which was maintained in the placebo and exercise groups after one year. MetS-Z was further decreased by liraglutide (- 0.37, 95% CI - 0.58 to - 0.16, P < 0.001) and the combination treatment (- 0.48, 95% CI - 0.70 to - 0.25, P < 0.001) compared to placebo. Abdominal fat percentage decreased by 2.6, 2.8, and 6.1 percentage points in the exercise, liraglutide, and combination groups compared to placebo, respectively, and hsCRP decreased only in the combination group compared with placebo (by 43%, P = 0.03). CONCLUSION: The combination of adherent exercise and liraglutide treatment reduced metabolic syndrome severity, abdominal obesity, and inflammation and may therefore reduce cardiometabolic risk more than the individual treatments. Trial registration EudraCT number: 2015-005585-32, ClinicalTrials.gov: NCT04122716.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Syndrome , Adult , Humans , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Diabetes Mellitus, Type 2/drug therapy , Obesity, Abdominal/complications , Metabolic Syndrome/drug therapy , C-Reactive Protein , Obesity/epidemiology , Weight Loss , Exercise , Inflammation/complications , Double-Blind Method
4.
Sleep ; 46(5)2023 05 10.
Article in English | MEDLINE | ID: mdl-36472579

ABSTRACT

STUDY OBJECTIVES: Insufficient sleep may attenuate weight loss, but the role of sleep in weight loss maintenance is unknown. Since weight regain after weight loss remains a major obstacle in obesity treatment, we investigated whether insufficient sleep predicts weight regain during weight loss maintenance. METHODS: In a randomized, controlled, two-by-two factorial study, 195 adults with obesity completed an 8-week low-calorie diet and were randomly assigned to 1-year weight loss maintenance with or without exercise and liraglutide 3.0 mg/day or placebo. Sleep duration and quality were measured before and after the low-calorie diet and during weight maintenance using wrist-worn accelerometers (GENEActiv) and Pittsburgh Sleep Quality Index (PSQI). To test associations between insufficient sleep and weight regain, participants were stratified at randomization into subgroups according to sleep duration (5). RESULTS: After a diet-induced 13.1 kg weight loss, participants with short sleep duration at randomization regained 5.3 kg body weight (p = .0008) and had less reduction in body fat percentage compared with participants with normal sleep duration (p = .007) during the 1-year weight maintenance phase. Participants with poor sleep quality before the weight loss regained 3.5 kg body weight compared with good quality sleepers (p = .010). During the weight maintenance phase, participants undergoing liraglutide treatment displayed increased sleep duration compared with placebo after 26 weeks (5 vs. -15 min/night) but not after 1 year. Participants undergoing exercise treatment preserved the sleep quality improvements attained from the initial weight loss. CONCLUSIONS: Short sleep duration or poor sleep quality was associated with weight regain after weight loss in adults with obesity.


Subject(s)
Liraglutide , Sleep Deprivation , Adult , Humans , Liraglutide/pharmacology , Liraglutide/therapeutic use , Sleep Deprivation/complications , Obesity/complications , Obesity/drug therapy , Weight Loss , Weight Gain
5.
Diabetes Obes Metab ; 25(1): 98-109, 2023 01.
Article in English | MEDLINE | ID: mdl-36054143

ABSTRACT

AIM: The voltage-gated potassium channel Kv 11.1 is important for repolarizing the membrane potential in excitable cells such as myocytes, pancreatic α- and ß-cells. Moxifloxacin blocks the Kv 11.1 channel and increases the risk of hypoglycaemia in patients with diabetes. We investigated glucose regulation and secretion of glucoregulatory hormones in young people with and without moxifloxacin, a drug known to block the Kv 11.1 channel. MATERIALS AND METHODS: The effect of moxifloxacin (800 mg/day for 4 days) or placebo on glucose regulation was assessed in a randomized, double-blind, crossover study of young men and women (age 20-40 years and body mass index 18.5-27.5 kg/m2 ) without chronic disease, using 6-h oral glucose tolerance tests and continuous glucose monitoring. RESULTS: Thirty-eight participants completed the study. Moxifloxacin prolonged the QTcF interval and increased heart rate. Hypoglycaemia was more frequently observed with moxifloxacin, both during the 8 days of continuous glucose monitoring and during the oral glucose tolerance tests. Hypoglycaemia questionnaire scores were higher after intake of moxifloxacin. Moxifloxacin reduced the early plasma-glucose response (AUC0-30 min ) by 7% (95% CI: -9% to -4%, p < .01), and overall insulin response (AUC0-360 min ) decreased by 18% (95% CI: -24% to -11%, p < .01) and plasma glucagon increased by 17% (95% CI: 4%-33%, p = .03). Insulin sensitivity calculated as the Matsuda index increased by 11%, and MISI, an index of muscle insulin sensitivity, increased by 34%. CONCLUSIONS: In young men and women, moxifloxacin, a drug known to block the Kv 11.1 channel, increased QT interval, decreased glucose levels and was associated with increased muscle insulin sensitivity and more frequent episodes of hypoglycaemia.


Subject(s)
Fluoroquinolones , Insulin Resistance , Humans , Female , Adolescent , Young Adult , Adult , Moxifloxacin/adverse effects , Fluoroquinolones/adverse effects , Cross-Over Studies , Blood Glucose Self-Monitoring , Blood Glucose
6.
Hum Reprod ; 37(7): 1414-1422, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35580859

ABSTRACT

STUDY QUESTION: Does diet-induced weight loss improve semen parameters, and are these possible improvements maintained with sustained weight loss? SUMMARY ANSWER: An 8-week low-calorie diet-induced weight loss was associated with improved sperm concentration and sperm count, which were maintained after 1 year in men who maintained weight loss. WHAT IS KNOWN ALREADY: Obesity is associated with impaired semen quality. Weight loss improves metabolic health in obesity, but there is a lack of knowledge on the acute and long-term effects of weight loss on semen parameters. STUDY DESIGN, SIZE, DURATION: This is a substudy of men with obesity enrolled in a randomized, controlled, double-blinded trial (the S-LITE trial). The trial was conducted between August 2016 and November 2019. A total of 56 men were included in the study and assigned to an initial 8-week low-calorie diet (800 kcal/day) followed by randomization to 52 weeks of either: placebo and habitual activity (placebo), exercise training and placebo (exercise), the Glucagon Like Peptide 1 (GLP-1) analogue liraglutide and habitual activity (liraglutide) or liraglutide in combination with exercise training (combination). PARTICIPANTS/MATERIALS, SETTING, METHODS: Inclusion criteria were men who delivered semen samples, 18 to 65 years of age, and a body mass index between 32 and 43 kg/m2, but otherwise healthy. The study was carried out at Hvidovre Hospital and at the University of Copenhagen, and the participants were from the Greater Copenhagen Area. We assessed semen parameters and anthropometrics and collected blood samples before (T0), after the 8-week low-calorie dietary intervention (T1), and after 52 weeks (T2). MAIN RESULTS AND THE ROLE OF CHANCE: The men lost on average 16.5 kg (95% CI: 15.2-17.8) body weight during the low-calorie diet, which increased sperm concentration 1.49-fold (95% CI: 1.18-1.88, P < 0.01) and sperm count 1.41-fold (95% CI: 1.07-1.87, P < 0.01). These improvements were maintained for 52 weeks in men who maintained the weight loss, but not in men who regained weight. Semen volume, sperm motility and motile sperm count did not change. LIMITATIONS, REASONS FOR CAUTION: The S-LITE trial was a randomized controlled trial of weight loss maintenance. Analysis of semen was preregistered to explore the effects of weight loss and weight loss maintenance on semen parameters, but definite inferences cannot be made. WIDER IMPLICATIONS OF THE FINDINGS: This study shows that sperm concentration and sperm count were improved after a diet-induced weight loss in men with obesity. Our findings indicate that either or both liraglutide and exercise as weight maintenance strategies may be used to maintain the improvements in sperm concentration and count. STUDY FUNDING/COMPETING INTEREST(S): This work is supported by an excellence grant from the Novo Nordisk Foundation (NNF16OC0019968), a Challenge Programme Grant from the Novo Nordisk Foundation (NNF18OC0033754) and a grant from Helsefonden. The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent research centre at the University of Copenhagen, partially funded by an unrestricted donation from the Novo Nordisk Foundation (NNF18CC0034900). Saxenda (liraglutide) and placebo pens were provided by Novo Nordisk. Cambridge Weight Plan diet products for the 8-week low-calorie diet were provided by Cambridge Weight Plan. E.A.: shareholder, employee of ExSeed Health Ltd. Grant Recipient from ExSeed Health Ltd and listed on Patents planned, issued or pending with ExSeed Health Ltd; J.J.H.: consultant for Eli Lilly A/S and Novo Nordisk A/S. Lecture fees for Novo Nordisk A/S. Listed on Patents planned, issued or pending with the University of Copenhagen, Advocacy group for Antag Therapeutics and Bainan Biotech; S.M.: lecture fees for Novo Nordisk A/S. Recipient of Support for attending meetings from Novo Nordisk A/S. Advisory boards of Novo Nordisk A/S; Sanofi Aventis and Merck Sharp & Dohme. S.S.T.: research grant recipient Novo Nordisk. The remaining authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: The trial was approved by the Ethical Committee of the Capital Region of Denmark (H-16027082) and the Danish Medicines Agency (EudraCT Number: 2015-005585-32). ClinicalTrials.gov identifier (NCT number): NCT04122716. TRIAL REGISTRATION DATE: 11 May 2016. DATE OF FIRST PATIENT'S ENROLMENT: August 2016.


Subject(s)
Semen Analysis , Sperm Motility , Diet, Reducing , Exercise , Female , Glucagon-Like Peptide 1 , Humans , Liraglutide/pharmacology , Liraglutide/therapeutic use , Male , Obesity/complications , Obesity/therapy , Semen , Sperm Count , Spermatozoa , Weight Loss
7.
Acta Physiol (Oxf) ; 234(3): e13781, 2022 03.
Article in English | MEDLINE | ID: mdl-34990074

ABSTRACT

Voltage-gated potassium (Kv ) channels play an important role in the repolarization of a variety of excitable tissues, including in the cardiomyocyte and the pancreatic beta cell. Recently, individuals carrying loss-of-function (LoF) mutations in KCNQ1, encoding Kv 7.1, and KCNH2 (hERG), encoding Kv 11.1, were found to exhibit post-prandial hyperinsulinaemia and episodes of hypoglycaemia. These LoF mutations also cause the cardiac disorder long QT syndrome (LQTS), which can be aggravated by hypoglycaemia. Interestingly, patients with LQTS also have a higher burden of diabetes compared to the background population, an apparent paradox in relation to the hyperinsulinaemic phenotype, and KCNQ1 has been identified as a type 2 diabetes risk gene. This review article summarizes the involvement of delayed rectifier K+ channels in pancreatic beta cell function, with emphasis on Kv 7.1 and Kv 11.1, using the cardiomyocyte for context. The functional and clinical consequences of LoF mutations and polymorphisms in these channels on blood glucose homeostasis are explored using evidence from pre-clinical, clinical and genome-wide association studies, thereby evaluating the link between LQTS, hyperinsulinaemia and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , ERG1 Potassium Channel , Hyperinsulinism , Hypoglycemia , Insulin-Secreting Cells , KCNQ1 Potassium Channel , Long QT Syndrome , Diabetes Mellitus, Type 2/genetics , ERG1 Potassium Channel/genetics , Genome-Wide Association Study , Humans , Hyperinsulinism/genetics , Hypoglycemia/genetics , Insulin-Secreting Cells/metabolism , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Mutation
8.
N Engl J Med ; 384(18): 1719-1730, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33951361

ABSTRACT

BACKGROUND: Weight regain after weight loss is a major problem in the treatment of persons with obesity. METHODS: In a randomized, head-to-head, placebo-controlled trial, we enrolled adults with obesity (body-mass index [the weight in kilograms divided by the square of the height in meters], 32 to 43) who did not have diabetes. After an 8-week low-calorie diet, participants were randomly assigned for 1 year to one of four strategies: a moderate-to-vigorous-intensity exercise program plus placebo (exercise group); treatment with liraglutide (3.0 mg per day) plus usual activity (liraglutide group); exercise program plus liraglutide therapy (combination group); or placebo plus usual activity (placebo group). End points with prespecified hypotheses were the change in body weight (primary end point) and the change in body-fat percentage (secondary end point) from randomization to the end of the treatment period in the intention-to-treat population. Prespecified metabolic health-related end points and safety were also assessed. RESULTS: After the 8-week low-calorie diet, 195 participants had a mean decrease in body weight of 13.1 kg. At 1 year, all the active-treatment strategies led to greater weight loss than placebo: difference in the exercise group, -4.1 kg (95% confidence interval [CI], -7.8 to -0.4; P = 0.03); in the liraglutide group, -6.8 kg (95% CI, -10.4 to -3.1; P<0.001); and in the combination group, -9.5 kg (95% CI, -13.1 to -5.9; P<0.001). The combination strategy led to greater weight loss than exercise (difference, -5.4 kg; 95% CI, -9.0 to -1.7; P = 0.004) but not liraglutide (-2.7 kg; 95% CI, -6.3 to 0.8; P = 0.13). The combination strategy decreased body-fat percentage by 3.9 percentage points, which was approximately twice the decrease in the exercise group (-1.7 percentage points; 95% CI, -3.2 to -0.2; P = 0.02) and the liraglutide group (-1.9 percentage points; 95% CI, -3.3 to -0.5; P = 0.009). Only the combination strategy was associated with improvements in the glycated hemoglobin level, insulin sensitivity, and cardiorespiratory fitness. Increased heart rate and cholelithiasis were observed more often in the liraglutide group than in the combination group. CONCLUSIONS: A strategy combining exercise and liraglutide therapy improved healthy weight loss maintenance more than either treatment alone. (Funded by the Novo Nordisk Foundation and others; EudraCT number, 2015-005585-32; ClinicalTrials.gov number, NCT04122716.).


Subject(s)
Anti-Obesity Agents/therapeutic use , Exercise Therapy , Liraglutide/therapeutic use , Obesity/therapy , Weight Loss , Adipose Tissue , Adult , Anti-Obesity Agents/adverse effects , Body Size , Caloric Restriction , Combined Modality Therapy , Female , Humans , Liraglutide/adverse effects , Male , Middle Aged , Obesity/diet therapy , Obesity/drug therapy , Weight Loss/drug effects
9.
BMC Endocr Disord ; 20(1): 38, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32164657

ABSTRACT

BACKGROUND: The voltage-gated potassium channel Kv7.1 encoded by KCNQ1 is located in both cardiac myocytes and insulin producing beta cells. Loss-of-function mutations in KCNQ1 causes long QT syndrome along with glucose-stimulated hyperinsulinemia, increased C-peptide and postprandial hypoglycemia. The KCNE1 protein modulates Kv7.1 in cardiac myocytes, but is not expressed in beta cells. Gain-of-function mutations in KCNQ1 and KCNE1 shorten the action potential duration in cardiac myocytes, but their effect on beta cells and insulin secretion is unknown. CASE PRESENTATION: Two patients with atrial fibrillation due to gain-of-function mutations in KCNQ1 (R670K) and KCNE1 (G60D) were BMI-, age-, and sex-matched to six control participants and underwent a 6-h oral glucose tolerance test (OGTT). During the OGTT, the KCNQ1 gain-of-function mutation carrier had 86% lower C-peptide response after glucose stimulation compared with matched control participants (iAUC360min = 34 pmol/l*min VS iAUC360min = 246 ± 71 pmol/l*min). The KCNE1 gain-of-function mutation carrier had normal C-peptide levels. CONCLUSIONS: This case story presents a patient with a gain-of-function mutation KCNQ1 R670K with low glucose-stimulated C-peptide secretion, additionally suggesting involvement of the voltage-gated potassium channel KCNQ1 in glucose-stimulated insulin regulation.


Subject(s)
Atrial Fibrillation/physiopathology , Gain of Function Mutation , Glucose/pharmacology , Insulin Resistance , Insulin/deficiency , KCNQ1 Potassium Channel/genetics , Myocytes, Cardiac/pathology , Action Potentials , Case-Control Studies , Humans , Insulin/blood , Male , Middle Aged , Myocytes, Cardiac/drug effects , Sweetening Agents/pharmacology
10.
Drug Saf ; 42(7): 919, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31041671

ABSTRACT

In the original publication of this article, the following correction should be noted in Table 1.

11.
Drug Saf ; 42(8): 957-971, 2019 08.
Article in English | MEDLINE | ID: mdl-30972641

ABSTRACT

The prevalence of obesity and related comorbidities is increasing worldwide. Furthermore, clinically meaningful body weight losses has proven difficult to achieve and especially to maintain through sustained lifestyle change in the form of diet and exercise. Pharmacotherapy against obesity is a non-invasive treatment as an adjunct to lifestyle changes, but approved anti-obesity drugs are currently few. This article reviews the major anti-obesity drugs and the benefit-risk profiles of the long-acting glucagon-like peptide-1 receptor agonists (GLP-1 RAs) liraglutide and semaglutide (a modified version of liraglutide with longer half-life and tripled receptor affinity). Generally, GLP-1 RAs are well tolerated and induce significant weight loss and lowering of comorbidities. Studies with liraglutide 3.0 mg/day have shown an average placebo-subtracted weight loss of 5.5 kg (range 4.6-5.9) in 1- to 3-year duration trials. One trial using semaglutide 0.4 mg once daily reported an average weight loss of 11.6% (~ 13.1 kg) after 1 year. Furthermore, semaglutide induced a ~ 6 percentage point larger placebo-subtracted body weight loss in a head-to-head comparison with liraglutide (11.6 vs. 5.5% weight loss, respectively). The safety profiles for both drugs were similar, with transient gastrointestinal disorders being the most commonly reported adverse events. The longest running trial and the most recent trials have not raised any new safety concerns. Long-term trials and post-marketing surveillance is warranted to fully assess both long-term efficacy and safety. Future combinational therapies of mimicked gut hormones involved in regulation of energy homeostasis and/or additional lifestyle change in the form of exercise might further improve efficacy.


Subject(s)
Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptides/therapeutic use , Liraglutide/therapeutic use , Obesity/drug therapy , Animals , Glucagon-Like Peptides/adverse effects , Humans , Hypoglycemic Agents , Liraglutide/adverse effects , Randomized Controlled Trials as Topic , Risk Assessment
12.
Nutrients ; 10(8)2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30096803

ABSTRACT

Whether there is a causal relationship between milk intake and acne is unknown. We tested the hypothesis that genetically determined milk intake is associated with acne in adults using a Mendelian randomization design. LCT-13910 C/T (rs4988235) is associated with lactase persistence (TT/TC) in Northern Europeans. We investigated the association between milk intake, LCT-13910 C/T (rs4988235), and acne in 20,416 adults (age-range: 20⁻96) from The Danish General Suburban Population Study (GESUS). The adjusted observational odds ratio for acne in any milk intake vs. no milk intake was 0.93(95% confidence interval: 0.48⁻1.78) in females and 0.49(0.22⁻1.08) in males aged 20⁻39 years, and 1.15(95% confidence interval: 0.66⁻1.99) in females and 1.02(0.61⁻1.72) in males above 40 years. The unadjusted odds ratio for acne in TT+TC vs. CC was 0.84(0.43⁻1.62) in the age group 20⁻39 years, and 0.99(0.52⁻1.88) above 40 years. We did not find any observational or genetic association between milk intake and acne in our population of adults.


Subject(s)
Acne Vulgaris/genetics , Lactase/genetics , Milk/adverse effects , Polymorphism, Single Nucleotide , Acne Vulgaris/diagnosis , Acne Vulgaris/enzymology , Acne Vulgaris/epidemiology , Adult , Aged , Aged, 80 and over , Animals , Cross-Sectional Studies , Denmark/epidemiology , Female , Genetic Predisposition to Disease , Humans , Lactase/metabolism , Male , Mendelian Randomization Analysis , Middle Aged , Phenotype , Risk Factors , Young Adult
13.
Nutrients ; 10(8)2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30096883

ABSTRACT

A meta-analysis can help inform the debate about the epidemiological evidence on dairy intake and development of acne. A systematic literature search of PubMed from inception to 11 December 2017 was performed to estimate the association of dairy intake and acne in children, adolescents, and young adults in observational studies. We estimated the pooled random effects odds ratio (OR) (95% CI), heterogeneity (I²-statistics, Q-statistics), and publication bias. We included 14 studies (n = 78,529; 23,046 acne-cases/55,483 controls) aged 7⁻30 years. ORs for acne were 1.25 (95% CI: 1.15⁻1.36; p = 6.13 × 10-8) for any dairy, 1.22 (1.08⁻1.38; p = 1.62 × 10-3) for full-fat dairy, 1.28 (1.13⁻1.44; p = 8.23 × 10-5) for any milk, 1.22 (1.06⁻1.41; p = 6.66 × 10-3) for whole milk, 1.32 (1.16⁻1.52; p = 4.33 × 10-5) for low-fat/skim milk, 1.22 (1.00⁻1.50; p = 5.21 × 10-2) for cheese, and 1.36 (1.05⁻1.77; p = 2.21 × 10-2) for yogurt compared to no intake. ORs per frequency of any milk intake were 1.24 (0.95⁻1.62) by 2⁻6 glasses per week, 1.41 (1.05⁻1.90) by 1 glass per day, and 1.43 (1.09⁻1.88) by ≥2 glasses per day compared to intake less than weekly. Adjusted results were attenuated and compared unadjusted. There was publication bias (p = 4.71 × 10-3), and heterogeneity in the meta-analyses were explained by dairy and study characteristics. In conclusion, any dairy, such as milk, yogurt, and cheese, was associated with an increased OR for acne in individuals aged 7⁻30 years. However, results should be interpreted with caution due to heterogeneity and bias across studies.


Subject(s)
Acne Vulgaris/epidemiology , Dairy Products/adverse effects , Acne Vulgaris/diagnosis , Adolescent , Adult , Age Factors , Child , Female , Humans , Male , Portion Size , Recommended Dietary Allowances , Risk Assessment , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...