Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(3): 3932-3941, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32122053

ABSTRACT

Fano resonances are observed in a composite metamaterial that consists of an electric split ring resonator eSRR and an I-shaped resonator ISR. By adjusting the length of the ISR the degree of asymmetry in the line shape of the composite metamaterial can be controlled and even made to be symmetric. In contrast to other methods to create Fano resonances, the individual modes of the eSRR and ISR have the same symmetry and are not evanescently coupled to each other. The transmission is simulated using the finite difference time domain method and a coupled oscillator model is used to obtain nominal values of the Fano asymmetry factor q. Composite metamaterials and individual eSRR and ISR metamaterials are fabricated, and their transmission is measured with terahertz time-domain spectroscopy.

2.
Opt Express ; 25(18): 21753-21761, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-29041469

ABSTRACT

Two-dimensional spectroscopy is performed on a terahertz (THz) frequency quantum cascade laser (QCL) with two broadband THz pulses. Gain switching is used to amplify the first THz pulse and the second THz pulse is used to probe the system. Fourier transforms are taken with respect to the delay time between the two THz pulses and the sampling time of the THz probe pulse. The two-dimensional spectrum consists of three peaks at (ωτ = 0, ωt = ω0), (ωτ = ω0, ωt = ω0), and (ωτ = 2ω0, ωt = ω0) where ω0 denotes the lasing frequency. The peak at ωτ = 0 represents the response of the probe to the zero-frequency (rectified) component of the instantaneous intensity and can be used to measure the gain recovery.

3.
Opt Express ; 24(19): 22319-33, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27661965

ABSTRACT

Dispersion control is a key objective in the field of photonics and spectroscopy, since it enhances non-linear effects by both enabling phase matching and offering slow light generation. In addition, it is essential for frequency comb generation, which requires a phase-lock mechanism that is provided by broadband compensation of group velocity dispersion (GVD). At optical frequencies, there are several well-established concepts for dispersion control such as prism or grating pairs. However, terahertz dispersion control is still a challenge, thus hindering further progress in the field of terahertz science and technology. In this work, we present a hybrid waveguide with both broadband, tuneable positive and more than octave-spanning negative terahertz GVD on the order of 10-22 s2/m, which is suitable for either intra- or extra cavity operation. This new terahertz device will enable ultra-short pulse compression, allow soliton propagation, improve frequency comb operation and foster the development of novel non-linear applications.

4.
Sci Rep ; 5: 16812, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26578287

ABSTRACT

The interaction between intersubband resonances (ISRs) and metamaterial microcavities constitutes a strongly coupled system where new resonances form that depend on the coupling strength. Here we present experimental evidence of strong coupling between the cavity resonance of a terahertz metamaterial and the ISR in a high electron mobility transistor (HEMT) structure. The device is electrically switched from an uncoupled to a strongly coupled regime by tuning the ISR with epitaxially grown transparent gate. The asymmetric potential in the HEMT structure enables ultrawide electrical tuning of ISR, which is an order of magnitude higher as compared to an equivalent square well. For a single heterojunction with a triangular confinement, we achieve an avoided splitting of 0.52 THz, which is a significant fraction of the bare intersubband resonance at 2 THz.

5.
J Phys Condens Matter ; 26(50): 505801, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25420072

ABSTRACT

We present a study on the intersublevel spacings of electrons and holes in a single layer of InAs self-assembled quantum dots. We use Fourier transform infrared transmission spectroscopy via a density chopping scheme for direct experimental observation of the intersublevel spacings of electrons without any external magnetic field. Epitaxial, complementary-doped and semi-transparent electrostatic gates are grown within the ultra high vacuum conditions of molecular beam epitaxy to voltage-tune the device, while a two dimensional electron gas (2DEG) serves as a back contact. Spacings of the hole sublevels are indirectly calculated from the photoluminescence spectrum by using a simple model given by Warburton et al [1]. Additionally, we observe that the intersubb and resonances of the 2DEG are enhanced due to the quantum dot layer on top of the device.

6.
Nat Commun ; 1: 69, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20842195

ABSTRACT

The amplification of spontaneous emission is used to initiate laser action. As the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase-resolved detection of the laser field. Here, we demonstrate how the carrier phase can be fixed in a semiconductor laser: a quantum cascade laser (QCL). This is performed by injection seeding a QCL with coherent terahertz pulses, which forces laser action to start on a fixed phase. This permits the emitted laser field to be synchronously sampled with a femtosecond laser beam, and measured in the time domain. We observe the phase-resolved buildup of the laser field, which can give insights into the laser dynamics. In addition, as the electric field oscillations are directly measured in the time domain, QCLs can now be used as sources for time-domain spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...