Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.256
Filter
1.
J Endocr Soc ; 8(8): bvae117, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38957653

ABSTRACT

Gut microbiota plays an important role in the regulation of bone homeostasis and bone health. Recent studies showed that these effects could be mediated through microbial metabolites released by the microbiota like short-chain fatty acids, metabolism of endogenous molecules such as bile acids, or a complex interplay between microbiota, the endocrine system, and the immune system. Importantly, some studies showed a reciprocal relationship between the endocrine system and gut microbiota. For instance, postmenopausal estrogen deficiency could lead to dysbiosis of the gut microbiota, which could in turn affect various immune response and bone remodeling. In addition, evidence showed that shift in the indigenous gut microbiota caused by antibiotics treatment may also impact normal skeletal growth and maturation. In this mini-review, we describe recent findings on the role of microbiome in bone homeostasis, with a particular focus on molecular mechanisms and their interactions with the endocrine and immune system. We will also discuss the recent findings on estrogen deficiency and microbiota dysbiosis, and the clinical implications for the development of new therapeutic strategies for osteoporosis and other bone disorders.

2.
J Infect Dis ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979599

ABSTRACT

BACKGROUND: The Dantu blood group variant protects against P. falciparum infections but its wider consequences have not been previously explored. Here, we investigate the impact of Dantu on susceptibility to bacteraemia. METHODS: We conducted a case-control study in children presenting with community-acquired bacteraemia to Kilifi County Hospital in Kenya between 1998 and 2010. We used logistic regression to test for associations between the Dantu marker SNP rs186873296 A>G and both all-cause and pathogen-specific bacteraemia under an additive model. We used date of admission as a proxy measure of malaria transmission intensity, given known differences in malaria prevalence over the course of the study. RESULTS: Dantu was associated with protection from all-cause bacteraemia (OR=0.81, p=0.014), the association being greatest in homozygotes (OR=0.30, p=0.013). This protection was shared across the major bacterial pathogens but, notably, was only significant during the era of high malaria-transmission pre-2003 (OR=0.79, p=0.023). CONCLUSIONS: Consistent with previous studies showing the indirect impact on bacteraemia risk of other malaria-associated red cell variants, our study also shows that Dantu is protective against bacteraemia via its effect on malaria risk. Dantu does not appear to be under balancing selection through an increased risk of bacterial infections.

3.
Article in English | MEDLINE | ID: mdl-39008618

ABSTRACT

Exercise training is recommended to improve quality of life in those living with Parkinson's Disease (PD); however, the optimal prescription to improve cardiorespiratory fitness and disease-related motor symptoms remains unknown. Twenty-nine participants with PD were randomly allocated to either 10-weeks of high-intensity interval training (HIIT) (n=15; 6 female) or moderate-intensity continuous training (MICT) (n=14; 5 female). The primary outcome was the change in maximal oxygen consumption (VO2peak). Secondary outcomes included changes in the Unified Parkinson's Disease Rating Scale (UPDRS) Part III motor score, Parkinson's Disease Fatigue Scale (PFS-16), resting and exercise cardiovascular measures, gait, balance, and knee extensor strength and fatigability. Exercise training increased VO2peak (main effect of time, P<0.01), with a clinically-meaningful difference in the change following HIIT vs. MICT (∆3.7±3.7 vs. 1.7±3.2 ml∙kg-1∙min-1, P=0.099). The UPDRS motor score improved over time (P<0.001) but without any differences between HIIT vs. MICT (∆-9.7±1.3 vs. -8.4±1.4, P=0.51). Self-reported subjective fatigue (PFS-16) decreased over time (P<0.01) but was similar between HIIT and MICT groups (P=0.6). Gait, balance, blood pressure, and heart rate were unchanged with training (all P>0.09). Knee extensor strength increased over time (P=0.03) but did not differ between HIIT vs. MICT (∆8.2±5.9 vs. 11.7±6.2 Nm, P=0.69). HIIT alone increased muscular endurance of the knee extensors during an isotonic task to failure (P=0.04). In participants with PD, HIIT and MICT both increased VO2peak and led to improvements in motor symptoms and perceived fatigue; HIIT may offer the potential for larger changes in VO2peak and reduced knee extensor fatigability.

4.
N Biotechnol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960022

ABSTRACT

The methylotrophic yeast Komagataella phaffii is a popular host system for the pharmaceutical and biotechnological production of recombinant proteins. CRISPR-Cas9 and its derivative CRISPR interference (CRISPRi) offer a promising avenue to further enhance and exploit the full capabilities of this host. MAD7 and its catalytically inactive variant "dead" MAD7 (dMAD7) represent an interesting alternative to established CRISPR-Cas9 systems and are free to use for industrial and academic research. CRISPRi utilizing dMAD7 does not introduce double-strand breaks but only binds to the DNA to regulate gene expression. Here, we report the first use of dMAD7 in K. phaffii to regulate the expression of the enhanced green fluorescent protein (eGFP). A reduction of eGFP fluorescence level (up to 88%) was achieved in random integration experiments using dMAD7 plasmids. Integration loci/events of investigated strains were assessed through whole genome sequencing. Additionally, RNA-sequencing experiments corroborated the whole genome sequencing results and showed a significantly reduced expression of eGFP in strains containing a dMAD7 plasmid, among others. Our findings conclusively demonstrate the utility of dMAD7 in K. phaffii through successfully regulating eGFP expression.

6.
Lab Chip ; 24(14): 3536-3545, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38946347

ABSTRACT

Early-stage diagnosis of prostatic carcinoma is essential for successful treatment and, thus, significant prognosis improvement. In laboratory practice, the standard non-invasive diagnostic approach is the immunochemical detection of the associated biomarker, prostate-specific antigen (PSA). Ultrasensitive detection of PSA is essential for both diagnostic and recurrence monitoring purposes. To achieve exceptional sensitivity, we have developed a microfluidic device with a flow-through cell for single-molecule analysis using photon-upconversion nanoparticles (UCNPs) as a detection label. For this purpose, magnetic microparticles (MBs) were first optimized for the capture and preconcentration of PSA and then used to implement a bead-based upconversion-linked immunoassay (ULISA) in the microfluidic device. The digital readout based on counting single nanoparticle-labeled PSA molecules on MBs enabled a detection limit of 1.04 pg mL-1 (36 fM) in 50% fetal bovine serum, which is an 11-fold improvement over the respective analog MB-based ULISA. The microfluidic technique conferred several other advantages, such as easy implementation and the potential for achieving high-throughput analysis. Finally, it was proven that the microfluidic setup is suitable for clinical sample analysis, showing a good correlation with a reference electrochemiluminescence assay (recovery rates between 97% and 105%).


Subject(s)
Prostate-Specific Antigen , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/blood , Humans , Microfluidic Analytical Techniques/instrumentation , Male , Nanoparticles/chemistry , Immunoassay/instrumentation , Immunoassay/methods , Limit of Detection , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/blood
7.
J Int Soc Sports Nutr ; 21(1): 2377194, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39010683

ABSTRACT

BACKGROUND: Military special operators, elite athletes, and others requiring uninterrupted optimal performance currently lack options for sleep and mood support without performance-inhibiting effects. Kavalactones, derived from the root of the kava plant (Piper methysticum Forst), have been shown to elevate mood and wellbeing by producing a feeling of relaxation without addiction or cognitive impairment. METHODS: In this placebo-controlled, crossover study (NCT05381025), we investigated the effects of 2 weeks of kavalactones use on cortisol (diurnal salivary), sleep (RSQ-W; Restorative Sleep Questionnaire, Weekly), mood (DASS-21; Depression Anxiety Stress Scale-21), and motivation state to expend (Move) or conserve (Rest) energy (CRAVE; Cravings for Rest and Volitional Energy Expenditure, Right Now) in a cohort of 15 healthy, physically fit young males engaged in a rigorous, two-a-day preparation class for special operations forces qualification. RESULTS: Cortisol, sleep, and mood were within normal, healthy parameters in this cohort at baseline. This remained unchanged with kavalactones use with no significant findings of clinical interest. However, a statistically similar, positive slope for within-group Move scores was seen in both groups during kavalactones loading (first group Move slope 2.25, second group Move slope 3.29, p = 0.299). This trend was seen regardless of order and with no apparent effects on the Rest metric (all p ≥ 0.05). Moreover, a significant between-group difference appeared after 1 week of kavalactones use in the first phase (p = 0.044) and persisted through the end of the first loading period (p = 0.022). Following the 10-day washout, this between-groups divergence remained significant (p = 0.038) but was reversed by 1 week after the crossover (p = 0.072), with Move scores once again statistically similar between groups and compared to baseline at study end. Furthermore, the group taking kavalactones first never experienced a significant decrease in Move motivation state (lowest mean score 21.0, highest 28.6, all p ≥ 0.05), while the group receiving kavalactones in the last 2 weeks of the study had Move scores that were statistically lower than baseline (lowest mean score 8.6, highest 25.9, all p ≤ 0.05) at all time points but the last (p = 0.063) after 2 weeks of kavalactones exposure. CONCLUSIONS: We report a novel finding that kavalactones may support performance by maintaining or rescuing the desire to expend energy in the context of significant physical and mental strain in well-conditioned individuals, even in a context of already normal cortisol, sleep, and mood.


Subject(s)
Affect , Cross-Over Studies , Hydrocortisone , Military Personnel , Motivation , Sleep , Humans , Male , Young Adult , Sleep/drug effects , Affect/drug effects , Adult , Saliva/chemistry , Double-Blind Method , Energy Metabolism/drug effects
8.
Trends Parasitol ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39025766

ABSTRACT

In 2004 the first annual BioMalPar meeting was held at EMBL Heidelberg, bringing together researchers from around the world with the goal of building connections between malaria research groups in Europe. Twenty years on it is time to reflect on what was achieved and to look ahead to the future.

9.
Sci Transl Med ; 16(750): eadh0185, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838133

ABSTRACT

Sepsis, the dysregulated host response to infection causing life-threatening organ dysfunction, is a global health challenge requiring better understanding of pathophysiology and new therapeutic approaches. Here, we applied high-throughput tandem mass spectrometry to delineate the plasma proteome for sepsis and comparator groups (noninfected critical illness, postoperative inflammation, and healthy volunteers) involving 2612 samples (from 1611 patients) and 4553 liquid chromatography-mass spectrometry analyses acquired through a single batch of continuous measurements, with a throughput of 100 samples per day. We show how this scale of data can delineate proteins, pathways, and coexpression modules in sepsis and be integrated with paired leukocyte transcriptomic data (837 samples from n = 649 patients). We mapped the plasma proteomic landscape of the host response in sepsis, including changes over time, and identified features relating to etiology, clinical phenotypes (including organ failures), and severity. This work reveals subphenotypes informative for sepsis response state, disease processes, and outcome; identifies potential biomarkers; and advances opportunities for a precision medicine approach to sepsis.


Subject(s)
Proteome , Sepsis , Humans , Sepsis/blood , Proteome/metabolism , Biomarkers/blood , Biomarkers/metabolism , Proteomics/methods , Male , Blood Proteins/metabolism , Blood Proteins/analysis , Female , Middle Aged , Tandem Mass Spectrometry/methods
10.
Data Brief ; 54: 110544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38868386

ABSTRACT

This paper presents the data (images, observations, metadata) of three different deployments of camera traps in the Amsterdam Water Supply Dunes, a Natura 2000 nature reserve in the coastal dunes of the Netherlands. The pilots were aimed at determining how different types of camera deployment (e.g. regular vs. wide lens, various heights, inside/outside exclosures) might influence species detections, and how to deploy autonomous wildlife monitoring networks. Two pilots were conducted in herbivore exclosures and mainly detected European rabbits (Oryctolagus cuniculus) and red fox (Vulpes vulpes). The third pilot was conducted outside exclosures, with the European fallow deer (Dama dama) being most prevalent. Across all three pilots, a total of 47,597 images were annotated using the Agouti platform. All annotations were verified and quality-checked by a human expert. A total of 2,779 observations of 20 different species (including humans) were observed using 11 wildlife cameras during 2021-2023. The raw image files (excluding humans), image metadata, deployment metadata and observations from each pilot are shared using the Camtrap DP open standard and the extended data publishing capabilities of GBIF to increase the findability, accessibility, interoperability, and reusability of this data. The data are freely available and can be used for developing artificial intelligence (AI) algorithms that automatically detect and identify species from wildlife camera images.

11.
Small ; : e2403013, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874067

ABSTRACT

Stabilizing liquid-liquid interfaces, whether between miscible or immiscible liquids, is crucial for a wide range of applications, including energy storage, microreactors, and biomimetic structures. In this study, a versatile approach for stabilizing the water-oil interface is presented using the morphological transitions that occur during the self-assembly of anionic, cationic, and nonionic surfactants mixed with fatty acid oils. The morphological transitions underlying this approach are characterized and extensively studied through small-angle X-ray scattering (SAXS), rheometry, and microscopy techniques. Dissipative particle dynamics (DPD) as a simulation tool is adopted to investigate these morphological transitions both in the equilibrium ternary system as well as in the dynamic condition of the water-oil interface. Such a versatile strategy holds promise for enhancing applications such as liquid-in-liquid 3D printing. Moreover, it has the potential to revolutionize a wide range of fields where stabilizing liquid-liquid interfaces not only offers unprecedented opportunities for fine-tuning nanostructural morphologies but also imparts interesting practical features to the resulting liquid shapes. These features include perfusion capabilities, self-healing, and porosity, which could have significant implications for various industries.

12.
Nat Commun ; 15(1): 4964, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862509

ABSTRACT

The SpaceX Inspiration4 mission provided a unique opportunity to study the impact of spaceflight on the human body. Biospecimen samples were collected from four crew members longitudinally before (Launch: L-92, L-44, L-3 days), during (Flight Day: FD1, FD2, FD3), and after (Return: R + 1, R + 45, R + 82, R + 194 days) spaceflight, spanning a total of 289 days across 2021-2022. The collection process included venous whole blood, capillary dried blood spot cards, saliva, urine, stool, body swabs, capsule swabs, SpaceX Dragon capsule HEPA filter, and skin biopsies. Venous whole blood was further processed to obtain aliquots of serum, plasma, extracellular vesicles and particles, and peripheral blood mononuclear cells. In total, 2,911 sample aliquots were shipped to our central lab at Weill Cornell Medicine for downstream assays and biobanking. This paper provides an overview of the extensive biospecimen collection and highlights their processing procedures and long-term biobanking techniques, facilitating future molecular tests and evaluations.As such, this study details a robust framework for obtaining and preserving high-quality human, microbial, and environmental samples for aerospace medicine in the Space Omics and Medical Atlas (SOMA) initiative, which can aid future human spaceflight and space biology experiments.


Subject(s)
Biological Specimen Banks , Space Flight , Specimen Handling , Humans , Specimen Handling/methods , Astronauts
13.
Nat Commun ; 15(1): 4954, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862516

ABSTRACT

Spaceflight induces an immune response in astronauts. To better characterize this effect, we generated single-cell, multi-ome, cell-free RNA (cfRNA), biochemical, and hematology data for the SpaceX Inspiration4 (I4) mission crew. We found that 18 cytokines/chemokines related to inflammation, aging, and muscle homeostasis changed after spaceflight. In I4 single-cell multi-omics data, we identified a "spaceflight signature" of gene expression characterized by enrichment in oxidative phosphorylation, UV response, immune function, and TCF21 pathways. We confirmed the presence of this signature in independent datasets, including the NASA Twins Study, the I4 skin spatial transcriptomics, and 817 NASA GeneLab mouse transcriptomes. Finally, we observed that (1) T cells showed an up-regulation of FOXP3, (2) MHC class I genes exhibited long-term suppression, and (3) infection-related immune pathways were associated with microbiome shifts. In summary, this study reveals conserved and distinct immune disruptions occurring and details a roadmap for potential countermeasures to preserve astronaut health.


Subject(s)
Single-Cell Analysis , Space Flight , Transcriptome , Animals , Female , Male , Humans , Mice , Astronauts , Cytokines/metabolism , T-Lymphocytes/immunology , Sex Factors , Gene Expression Profiling , Oxidative Phosphorylation
14.
Cell Genom ; 4(7): 100587, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38897207

ABSTRACT

Sepsis is a clinical syndrome of life-threatening organ dysfunction caused by a dysregulated response to infection, for which disease heterogeneity is a major obstacle to developing targeted treatments. We have previously identified gene-expression-based patient subgroups (sepsis response signatures [SRS]) informative for outcome and underlying pathophysiology. Here, we aimed to investigate the role of genetic variation in determining the host transcriptomic response and to delineate regulatory networks underlying SRS. Using genotyping and RNA-sequencing data on 638 adult sepsis patients, we report 16,049 independent expression (eQTLs) and 32 co-expression module (modQTLs) quantitative trait loci in this disease context. We identified significant interactions between SRS and genotype for 1,578 SNP-gene pairs and combined transcription factor (TF) binding site information (SNP2TFBS) and predicted regulon activity (DoRothEA) to identify candidate upstream regulators. Overall, these approaches identified putative mechanistic links between host genetic variation, cell subtypes, and the individual transcriptomic response to infection.


Subject(s)
Gene Regulatory Networks , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sepsis , Humans , Sepsis/genetics , Gene Regulatory Networks/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Male , Female , Transcriptome , Middle Aged , Adult , Genotype
15.
Nature ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862028

ABSTRACT

Spaceflight induces molecular, cellular and physiological shifts in astronauts and poses myriad biomedical challenges to the human body, which are becoming increasingly relevant as more humans venture into space1-6. Yet current frameworks for aerospace medicine are nascent and lag far behind advancements in precision medicine on Earth, underscoring the need for rapid development of space medicine databases, tools and protocols. Here we present the Space Omics and Medical Atlas (SOMA), an integrated data and sample repository for clinical, cellular and multi-omic research profiles from a diverse range of missions, including the NASA Twins Study7, JAXA CFE study8,9, SpaceX Inspiration4 crew10-12, Axiom and Polaris. The SOMA resource represents a more than tenfold increase in publicly available human space omics data, with matched samples available from the Cornell Aerospace Medicine Biobank. The Atlas includes extensive molecular and physiological profiles encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiome datasets, which reveal some consistent features across missions, including cytokine shifts, telomere elongation and gene expression changes, as well as mission-specific molecular responses and links to orthologous, tissue-specific mouse datasets. Leveraging the datasets, tools and resources in SOMA can help to accelerate precision aerospace medicine, bringing needed health monitoring, risk mitigation and countermeasure data for upcoming lunar, Mars and exploration-class missions.

16.
Bioinform Adv ; 4(1): vbae085, 2024.
Article in English | MEDLINE | ID: mdl-38911824

ABSTRACT

Motivation: Pooled designs for single-cell RNA sequencing, where many cells from distinct samples are processed jointly, offer increased throughput and reduced batch variation. This study describes expression-aware demultiplexing (EAD), a computational method that employs differential co-expression patterns between individuals to demultiplex pooled samples without any extra experimental steps. Results: We use synthetic sample pools and show that the top interindividual differentially co-expressed genes provide a distinct cluster of cells per individual, significantly enriching the regulation of metabolism. Our application of EAD to samples of six isogenic inbred mice demonstrated that controlling genetic and environmental effects can solve interindividual variations related to metabolic pathways. We utilized 30 samples from both sepsis and healthy individuals in six batches to assess the performance of classification approaches. The results indicate that combining genetic and EAD results can enhance the accuracy of assignments (Min. 0.94, Mean 0.98, Max. 1). The results were enhanced by an average of 1.4% when EAD and barcoding techniques were combined (Min. 1.25%, Median 1.33%, Max. 1.74%). Furthermore, we demonstrate that interindividual differential co-expression analysis within the same cell type can be used to identify cells from the same donor in different activation states. By analysing single-nuclei transcriptome profiles from the brain, we demonstrate that our method can be applied to nonimmune cells. Availability and implementation: EAD workflow is available at https://isarnassiri.github.io/scDIV/ as an R package called scDIV (acronym for single-cell RNA-sequencing data demultiplexing using interindividual variations).

17.
Front Plant Sci ; 15: 1383100, 2024.
Article in English | MEDLINE | ID: mdl-38745919

ABSTRACT

In controlled environment agriculture, customized light treatments using light-emitting diodes are crucial to improving crop yield and quality. Red (R; 600-700 nm) and blue light (B; 400-500 nm) are two major parts of photosynthetically active radiation (PAR), often preferred in crop production. Far-red radiation (FR; 700-800 nm), although not part of PAR, can also affect photosynthesis and can have profound effects on a range of morphological and physiological processes. However, interactions between different red and blue light ratios (R:B) and FR on promoting yield and nutritionally relevant compounds in crops remain unknown. Here, lettuce was grown at 200 µmol m-2 s-1 PAR under three different R:B ratios: R:B87.5:12.5 (12.5% blue), R:B75:25 (25% blue), and R:B60:40 (40% blue) without FR. Each treatment was also performed with supplementary FR (50 µmol m-2 s-1; R:B87.5:12.5+FR, R:B75:25+FR, and R:B60:40+FR). White light with and without FR (W and W+FR) were used as control treatments comprising of 72.5% red, 19% green, and 8.5% blue light. Increasing the R:B ratio from R:B87.5:12.5 to R:B60:40, there was a decrease in fresh weight (20%) and carbohydrate concentration (48% reduction in both sugars and starch), whereas pigment concentrations (anthocyanins, chlorophyll, and carotenoids), phenolic compounds, and various minerals all increased. These results contrasted the effects of FR supplementation in the growth spectra; when supplementing FR to different R:B backgrounds, we found a significant increase in plant fresh weight, dry weight, total soluble sugars, and starch. Additionally, FR decreased concentrations of anthocyanins, phenolic compounds, and various minerals. Although blue light and FR effects appear to directly contrast, blue and FR light did not have interactive effects together when considering plant growth, morphology, and nutritional content. Therefore, the individual benefits of increased blue light fraction and supplementary FR radiation can be combined and used cooperatively to produce crops of desired quality: adding FR increases growth and carbohydrate concentration while increasing the blue fraction increases nutritional value.

18.
Oncology (Williston Park) ; 38(5): 208-209, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38776517

ABSTRACT

Artificial intelligence use in prostate cancer encompasses 4 main areas including diagnostic imaging, prediction of outcomes, histopathology, and treatment planning.


Subject(s)
Artificial Intelligence , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology
19.
Phys Rev Lett ; 132(16): 162502, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701465

ABSTRACT

The nuclear charge radius of ^{32}Si was determined using collinear laser spectroscopy. The experimental result was confronted with ab initio nuclear lattice effective field theory, valence-space in-medium similarity renormalization group, and mean field calculations, highlighting important achievements and challenges of modern many-body methods. The charge radius of ^{32}Si completes the radii of the mirror pair ^{32}Ar-^{32}Si, whose difference was correlated to the slope L of the symmetry energy in the nuclear equation of state. Our result suggests L≤60 MeV, which agrees with complementary observables.

20.
Int J Sport Nutr Exerc Metab ; : 1-9, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789098

ABSTRACT

Postexercise hydration is fundamental to replace fluid loss from sweat. This study evaluated rehydration and gastrointestinal (GI) symptoms for each of three beverages: water (W), sports drink (SD), and skimmed, lactose-free milk (SLM) after moderate-intensity cycling in the heat. Sixteen college students completed three exercise sessions each to lose ≈2% of their body mass. They drank 150% of body mass loss of the drink assigned in randomized order; net fluid balance, diuresis, and GI symptoms were measured and followed up for 3 hr after completion of fluid intake. SLM showed higher fluid retention (∼69%) versus W (∼40%; p < .001); SD (∼56%) was not different from SLM or W (p > .05). Net fluid balance was higher for SLM (-0.26 kg) and SD (-0.42 kg) than W (-0.67 kg) after 3 hr (p < .001), resulting from a significantly lower diuresis with SLM. Reported GI disturbances were mild and showed no difference among drinks (p > .05) despite ingestion of W (1,992 ± 425 ml), SD (1,999 ± 429 ml), and SLM (1,993 ± 426 ml) in 90 min. In conclusion, SLM was more effective than W for postexercise rehydration, showing greater fluid retention for the 3-hr follow-up and presenting with low-intensity GI symptoms similar to those with W and SD. These results confirm that SLM is an effective option for hydration after exercise in the heat.

SELECTION OF CITATIONS
SEARCH DETAIL
...