Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20178558

ABSTRACT

Contact tracing is an important tool for allowing countries to ease lock-down policies introduced to combat SARS-CoV-2. For contact tracing to be effective, those with symptoms must self-report themselves while their contacts must self-isolate when asked. However, policies such as legal enforcement of self-isolation can create trade-offs by dissuading individuals from self-reporting. We use an existing branching process model to examine which aspects of contact tracing adherence should be prioritised. We consider an inverse relationship between self-isolation adherence and self-reporting engagement, assuming that increasingly strict self-isolation policies will result in fewer individuals self-reporting to the programme. We find that policies that increase the average duration of self-isolation, or that increase the probability that people self-isolate at all, at the expense of reduced self-reporting rate, will not decrease the risk of a large outbreak and may increase the risk, depending on the strength of the trade-off. These results suggest that policies to increase self-isolation adherence should be implemented carefully. Policies that increase self-isolation adherence at the cost of self-reporting rates should be avoided.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20077024

ABSTRACT

BackgroundIsolation of symptomatic cases and tracing of contacts has been used as an early COVID-19 containment measure in many countries, with additional physical distancing measures also introduced as outbreaks have grown. To maintain control of infection while also reducing disruption to populations, there is a need to understand what combination of measures - including novel digital tracing approaches and less intensive physical distancing - may be required to reduce transmission. MethodsUsing a model of individual-level transmission stratified by setting (household, work, school, other) based on BBC Pandemic data from 40,162 UK participants, we simulated the impact of a range of different testing, isolation, tracing and physical distancing scenarios. As well as estimating reduction in effective reproduction number, we estimated, for a given level of COVID-19 incidence, the number of contacts that would be newly quarantined each day under different strategies. ResultsUnder optimistic but plausible assumptions, we estimated that combined testing and tracing strategies would reduce transmission more than mass testing or self-isolation alone (50-65% compared to 2-30%). If limits are placed on gatherings outside of home/school/work (e.g. maximum of 4 daily contacts in other settings), then manual contact tracing of acquaintances only could have a similar effect on transmission reduction as detailed contact tracing. In a scenario where there were 10,000 new symptomatic cases per day, we estimated in most contact tracing strategies, 140,000 to 390,000 contacts would be newly quarantined each day. ConclusionsConsistent with previous modelling studies and country-specific COVID-19 responses to date, our analysis estimates that a high proportion of cases would need to self-isolate and a high proportion of their contacts to be successfully traced to ensure an effective reproduction number that is below one in the absence of other measures. If combined with moderate physical distancing measures, self-isolation and contact tracing would be more likely to achieve control. FundingWellcome Trust, EPSRC, European Commission.

SELECTION OF CITATIONS
SEARCH DETAIL
...