Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2400627, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724020

ABSTRACT

Programmable and reconfigurable optics hold significant potential for transforming a broad spectrum of applications, spanning space explorations to biomedical imaging, gas sensing, and optical cloaking. The ability to adjust the optical properties of components like filters, lenses, and beam steering devices could result in dramatic reductions in size, weight, and power consumption in future optoelectronic devices. Among the potential candidates for reconfigurable optics, chalcogenide-based phase change materials (PCMs) offer great promise due to their non-volatile and analogue switching characteristics. Although PCM have found widespread use in electronic data storage, these memory devices are deeply sub-micron-sized. To incorporate phase change materials into free-space optical components, it is essential to scale them up to beyond several hundreds of microns while maintaining reliable switching characteristics. This study demonstrated a non-mechanical, non-volatile transmissive filter based on low-loss PCMs with a 200 × 200 µm2 switching area. The device/metafilter can be consistently switched between low- and high-transmission states using electrical pulses with a switching contrast ratio of 5.5 dB. The device was reversibly switched for 1250 cycles before accelerated degradation took place. The work represents an important step toward realizing free-space reconfigurable optics based on PCMs.

3.
NPJ Microgravity ; 10(1): 20, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378811

ABSTRACT

Recent growth in space systems has seen increasing capabilities packed into smaller and lighter Earth observation and deep space mission spacecraft. Phase-change materials (PCMs) are nonvolatile, reconfigurable, fast-switching, and have recently shown a high degree of space radiation tolerance, thereby making them an attractive materials platform for spaceborne photonics applications. They promise robust, lightweight, and energy-efficient reconfigurable optical systems whose functions can be dynamically defined on-demand and on-orbit to deliver enhanced science or mission support in harsh environments on lean power budgets. This comment aims to discuss the recent advances in rapidly growing PCM research and its potential to transition from conventional terrestrial optoelectronics materials platforms to versatile spaceborne photonic materials platforms for current and next-generation space and science missions. Materials International Space Station Experiment-14 (MISSE-14) mission-flown PCMs outside of the International Space Station (ISS) and key results and NASA examples are highlighted to provide strong evidence of the applicability of spaceborne photonics.

4.
Opt Express ; 28(7): 10583-10594, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32225640

ABSTRACT

We demonstrate spectrally-tunable Fabry-Perot bandpass filters operating across the MWIR by utilizing the phase-change material GeSbTe (GST) as a tunable cavity medium between two (Ge:Si) distributed Bragg reflectors. The induced refractive index modulation of GST increases the cavity's optical path length, red-shifting the passband. Our filters have spectral-tunability of ∼300 nm, transmission efficiencies of 60-75% and narrowband FWHMs of 50-65 nm (Q-factor ∼70-90). We further show multispectral thermal imaging and gas sensing. By matching the filter's initial passband to a CO2 vibrational-absorption mode (∼4.25 µm), tunable atmospheric CO2 sensing and dynamic plume visualization of added CO2 is realized.

5.
Optica ; 7(7): 746-754, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-34277892

ABSTRACT

Tunable narrowband spectral filtering across arbitrary optical wavebands is highly desirable in a plethora of applications, from chemical sensing and hyperspectral imaging to infrared astronomy. Yet, the ability to reconfigure the optical properties, with full reversibility, of a solid-state large-area narrowband filter remains elusive. Existing solutions require either moving parts, have slow response times, or provide limited spectral coverage. Here, we demonstrate a 1-inch diameter continuously tunable, fully reversible, all-solid-state, narrowband phase-change metasurface filter based on a GeSbTe-225 (GST)-embedded plasmonic nanohole array. The passband of the presented device is ∼ 74 n m with ∼ 70 % transmittance and operates across the 3-5 µm thermal imaging waveband. Continuous, reconfigurable tuning is achieved by exploiting intermediate GST phases via optical switching with a single nanosecond laser pulse, and material stability is verified through multiple switching cycles. We further demonstrate multispectral thermal imaging in the mid-wave infrared using our active phase-change metasurfaces. Our results pave the way for highly functional, reduced power, compact hyperspectral imaging systems and customizable optical filters for real-world system integration.

6.
Appl Opt ; 58(1): 109-114, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30645507

ABSTRACT

Over the past several decades, the need for high-resolution, high-efficiency, lightweight, high-contrast focusing optics has continued to increase due to their applications in fields such as astronomy, spectroscopy, free-space optical communications, defense, and remote sensing. In recent years, photon sieve planar diffractive optics, which are essentially Fresnel zone plates with the rings broken into individual "pinhole" apertures, have been developed on flexible, lightweight polyimide substrates. However, transmission efficiencies have continuously been very low (∼1%-11%) until this work, thus impeding the widespread use of photon sieves in practical applications. Here, we present flexible, lightweight, four- and eight-level phase photon sieves with 25.7% and 49.7% transmission efficiency, respectively, up to five times greater than that of any other photon sieve reported thus far. Additionally, these sieves were fabricated via a single step pulsed laser ablation method. The total time to fabricate a ∼3 cm2 photon sieve via the single-step fabrication was tens of seconds, giving the technique a significant advantage over traditional photolithography used to generate multilevel structures. Analytical analysis of the photon sieve was carried out via the finite-difference time-domain (FDTD) method and was in very good agreement with experimental results. We have also calculated via FDTD modeling the behavior of higher-level photon sieves for further enhanced efficiencies, and analytically show an estimated upper bound on photon sieve efficiency of 70% within the first focal plane null in the limit of increasing step number, and the data presented herein provide a relationship between efficiency and step number. Additionally, this process of multilevel diffractive lens fabrication can be extended to multilevel Fresnel zone plates, which have not previously been demonstrated by this process. The results presented in this work represent a new step in high-resolution diffractive optics, showing efficiencies suitable for widespread applications in addition to drastically reducing the cost and complexity of fabricating multilevel focusing elements.

7.
Opt Lett ; 43(10): 2368-2371, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29762594

ABSTRACT

A binary phase diffractive optical element photon sieve is fabricated by direct laser ablation of a thin, flexible polyimide substrate with a nanosecond-pulsed ultraviolet laser. The binary phase photon sieve operates at 633 nm and was designed with 19 rings and a focal length of 400 mm. The total time to fabricate the photon sieves was tens of seconds. The surface properties of the laser-processed areas are examined, and the optical performance of the photon sieve is characterized and compared to FDTD simulations. By optimizing the laser fluence and travel distance between laser pulses, features with sub-wavelength surface roughness were achieved. The photon sieve showed good focusing ability with suppressed side-lobes. When the fractional area of photon sieve pinholes was made to approach 50%, the binary sieve diffraction efficiency approached 11%, matching the highest value reported in the literature for a photon sieve. Thus, this Letter demonstrates both high efficiency and lightweight diffractive optics suitable for space satellite and other applications, with capabilities for low cost and high throughput fabrication.

8.
Opt Express ; 25(25): 31528-31538, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29245827

ABSTRACT

In this work, we demonstrate the feasibility and performance of photon sieve diffractive optical elements fabricated via a direct laser ablation process. Pulses of 50 ns width and wavelength 1064 nm from an ytterbium fiber laser were focused to a spot diameter of approximately 35 µm. Using a galvanometric scan head writing at 100 mm/s, a 30.22 mm2 photon sieve operating at 633 nm wavelength with a focal length of 400 mm was fabricated. The optical performance of the sieve was characterized and is in strong agreement with numerical simulations, producing a focal spot size full-width at half-maximum (FWHM) of 45.12 ± 0.74 µm with a photon sieve minimum pinhole diameter of 62.2 µm. The total time to write the photon sieve pattern was 28 seconds as compared to many hours using photolithography methods. We also present, for the first time to our knowledge in the literature, thorough characterization of the influence of angle of incidence, temperature, and illumination wavelength on photon sieve performance. Thus, this work demonstrates the potential for a high speed, low cost fabrication method of photon sieves that is highly customizable and capable of producing sieves with low or high numerical apertures.

9.
BMJ Case Rep ; 2011: 3347, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-22715234

ABSTRACT

A 24-year-old female presented with generalised weakness, lethargy and aches in legs. She was subsequently found to be markedly hypokalaemic and have a metabolic acidosis. A diagnosis of distal renal tubular acidosis (RTA) was made. In addition to this failure to alkalinise her urine, she was unable to concentrate it and so a diagnosis of nephrogenic diabetes insipidus was reached. Further questioning revealed previous investigation of a connective tissue disorder thought to be primary Sjögren's syndrome. RTA is a recognised but rare complication of Sjögren's syndrome. Urinary alkalinisation using potassium bicarbonate was instituted; the patient responded well to treatment and is having outpatient follow-up.


Subject(s)
Acidosis, Renal Tubular/etiology , Paralysis/etiology , Sjogren's Syndrome/complications , Disease Progression , Female , Humans , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...