Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-434300

ABSTRACT

Children typically experience more mild symptoms of COVID-19 when compared to adults. There is a strong body of evidence that children are also less susceptible to SARS-CoV-2 infection with the ancestral viral isolate. However, the emergence of SARS-CoV-2 variants of concern (VOCs) has been associated with an increased number of pediatric infections. Whether this is the result of widespread adult vaccination or fundamental changes in the biology of SARS-CoV-2 remains to be determined. Here, we use primary nasal epithelial cells from children and adults, differentiated at an air-liquid interface to show that the ancestral SARS-CoV-2 replicates to significantly lower titers in the nasal epithelial cells of children compared to those of adults. This was associated with a heightened antiviral response to SARS-CoV-2 in the nasal epithelial cells of children. Importantly, the Delta variant also replicated to significantly lower titres in the nasal epithelial cells of children. This trend was markedly less pronounced in the case of Omicron. It is also striking to note that, at least in terms of viral RNA, Omicron replicated better in pediatric NECs compared to both Delta and the ancestral virus. Taken together, these data show that the nasal epithelium of children supports lower infection and replication of ancestral SARS-CoV-2, although this may be changing as the virus evolves.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-169334

ABSTRACT

Heparan sulfate (HS) is a cell surface polysaccharide recently identified as a co-receptor with the ACE2 protein for recognition of the S1 spike protein on SARS-CoV-2 virus, providing a tractable new target for therapeutic intervention. Clinically-used heparins demonstrate inhibitory activity, but world supplies are limited, necessitating alternative solutions. Synthetic HS mimetic pixatimod is a drug candidate for cancer with immunomodulatory and heparanase-inhibiting properties. Here we show that pixatimod binds to and destabilizes the SARS-CoV-2 spike protein receptor binding domain (S1-RBD), and directly inhibits its binding to human ACE2, consistent with molecular modelling identification of multiple molecular contacts and overlapping pixatimod and ACE2 binding sites. Assays with multiple clinical isolates of live SARS-CoV-2 virus show that pixatimod potently inhibits infection of monkey Vero E6 and human bronchial epithelial cells at concentrations within its safe therapeutic dose range. Furthermore, in a K18-hACE2 mouse model pixatimod demonstrates that pixatimod markedly attenuates SARS-CoV-2 viral titer and COVID-19-like symptoms. This demonstration of potent anti-SARS-CoV-2 activity establishes proof-of-concept for targeting the HS-Spike protein-ACE2 axis with synthetic HS mimetics. Together with other known activities of pixatimod our data provides a strong rationale for its clinical investigation as a potential multimodal therapeutic to address the COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...