Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
BMJ Open Diabetes Res Care ; 12(2)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575153

ABSTRACT

INTRODUCTION: Congenital hyperinsulinism (HI) is the leading cause of persistent hypoglycemia in infants. Current models to study the most common and severe form of HI resulting from inactivating mutations in the ATP-sensitive potassium channel (KATP) are limited to primary islets from patients and the Sur1 -/- mouse model. Zebrafish exhibit potential as a novel KATPHI model since they express canonical insulin secretion pathway genes and those with identified causative HI mutations. Moreover, zebrafish larvae transparency provides a unique opportunity for in vivo visualization of pancreatic islets. RESEARCH DESIGN AND METHODS: We evaluated zebrafish as a model for KATPHI using a genetically encoded Ca2+ sensor (ins:gCaMP6s) expressed under control of the insulin promoter in beta cells of an abcc8 -/- zebrafish line. RESULTS: We observed significantly higher islet cytosolic Ca2+ in vivo in abcc8 -/- compared with abcc8 +/+ zebrafish larvae. Additionally, abcc8 -/- larval zebrafish had significantly lower whole body glucose and higher whole body insulin levels compared with abcc8 +/+ controls. However, adult abcc8 -/- zebrafish do not show differences in plasma glucose, plasma insulin, or glucose tolerance when compared with abcc8 +/+ zebrafish. CONCLUSIONS: Our results identify that zebrafish larvae, but not adult fish, are a demonstrable novel model for advancement of HI research.


Subject(s)
Congenital Hyperinsulinism , Potassium Channels, Inwardly Rectifying , Infant , Adult , Animals , Mice , Humans , KATP Channels/genetics , Zebrafish/genetics , Zebrafish/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Congenital Hyperinsulinism/genetics , Insulin/metabolism , Glucose , Adenosine Triphosphate
2.
Diabetes ; 72(12): 1809-1819, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37725835

ABSTRACT

The importance of glucokinase (GK) in the regulation of insulin secretion has been highlighted by the phenotypes of individuals with activating and inactivating mutations in the glucokinase gene (GCK). Here we report 10 individuals with congenital hyperinsulinism (HI) caused by eight unique activating mutations of GCK. Six are novel and located near previously identified activating mutations sites. The first recognized episode of hypoglycemia in these patients occurred between birth and 24 years, and the severity of the phenotype was also variable. Mutant enzymes were expressed and purified for enzyme kinetics in vitro. Mutant enzymes had low glucose half-saturation concentration values and an increased enzyme activity index compared with wild-type GK. We performed functional evaluation of islets from the pancreata of three children with GCK-HI who required pancreatectomy. Basal insulin secretion in perifused GCK-HI islets was normal, and the response to glyburide was preserved. However, the threshold for glucose-stimulated insulin secretion in perifused glucokinase hyperinsulinism (GCK-HI) islets was decreased, and glucagon secretion was greatly suppressed. Our evaluation of novel GCK disease-associated mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. ARTICLE HIGHLIGHTS: Our evaluation of six novel and two previously published activating GCK mutations revealed that the detrimental effects of these mutations on glucose homeostasis can be attributed not only to a lowering of the glucose threshold of insulin secretion but also to a decreased counterregulatory glucagon secretory response. These studies provide insights into the pathophysiology of GCK-hyperinsulinism and the dual role of glucokinase in ß-cells and α-cells to regulate glucose homeostasis.


Subject(s)
Congenital Hyperinsulinism , Hyperinsulinism , Child , Humans , Glucokinase/genetics , Glucagon , Congenital Hyperinsulinism/genetics , Hyperinsulinism/genetics , Glucose , Mutation , Phenotype
3.
Diabetes ; 72(9): 1320-1329, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37358194

ABSTRACT

Congenital hyperinsulinism (HI) is a genetic disorder in which pancreatic ß-cell insulin secretion is excessive and results in hypoglycemia that, without treatment, can cause brain damage or death. Most patients with loss-of-function mutations in ABCC8 and KCNJ11, the genes encoding the ß-cell ATP-sensitive potassium channel (KATP), are unresponsive to diazoxide, the only U.S. Food and Drug Administration-approved medical therapy and require pancreatectomy. The glucagon-like peptide 1 receptor (GLP-1R) antagonist exendin-(9-39) is an effective therapeutic agent that inhibits insulin secretion in both HI and acquired hyperinsulinism. Previously, we identified a highly potent antagonist antibody, TB-001-003, which was derived from our synthetic antibody libraries that were designed to target G protein-coupled receptors. Here, we designed a combinatorial variant antibody library to optimize the activity of TB-001-003 against GLP-1R and performed phage display on cells overexpressing GLP-1R. One antagonist, TB-222-023, is more potent than exendin-(9-39), also known as avexitide. TB-222-023 effectively decreased insulin secretion in primary isolated pancreatic islets from a mouse model of hyperinsulinism, Sur1-/- mice, and in islets from an infant with HI, and increased plasma glucose levels and decreased the insulin to glucose ratio in Sur1-/- mice. These findings demonstrate that targeting GLP-1R with an antibody antagonist is an effective and innovative strategy for treatment of hyperinsulinism. ARTICLE HIGHLIGHTS: Patients with the most common and severe form of diazoxide-unresponsive congenital hyperinsulinism (HI) require a pancreatectomy. Other second-line therapies are limited in their use because of severe side effects and short half-lives. Therefore, there is a critical need for better therapies. Studies with the glucagon-like peptide 1 receptor (GLP-1R) antagonist, avexitide (exendin-(9-39)), have demonstrated that GLP-1R antagonism is effective at lowering insulin secretion and increasing plasma glucose levels. We have optimized a GLP-1R antagonist antibody with more potent blocking of GLP-1R than avexitide. This antibody therapy is a potential novel and effective treatment for HI.


Subject(s)
Congenital Hyperinsulinism , Glucagon-Like Peptide-1 Receptor , Hyperinsulinism , Animals , Mice , Antibodies/therapeutic use , Blood Glucose , Congenital Hyperinsulinism/drug therapy , Congenital Hyperinsulinism/genetics , Diazoxide/pharmacology , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Hyperinsulinism/immunology , Hyperinsulinism/therapy , Mutation , Sulfonylurea Receptors/genetics
4.
J Biol Chem ; 299(6): 104816, 2023 06.
Article in English | MEDLINE | ID: mdl-37178920

ABSTRACT

Congenital hyperinsulinism (HI), a beta cell disorder most commonly caused by inactivating mutations of beta cell KATP channels, results in dysregulated insulin secretion and persistent hypoglycemia. Children with KATP-HI are unresponsive to diazoxide, the only FDA-approved drug for HI, and utility of octreotide, the second-line therapy, is limited because of poor efficacy, desensitization, and somatostatin receptor type 2 (SST2)-mediated side effects. Selective targeting of SST5, an SST receptor associated with potent insulin secretion suppression, presents a new avenue for HI therapy. Here, we determined that CRN02481, a highly selective nonpeptide SST5 agonist, significantly decreased basal and amino acid-stimulated insulin secretion in both Sur1-/- (a model for KATP-HI) and wild-type mouse islets. Oral administration of CRN02481 significantly increased fasting glucose and prevented fasting hypoglycemia compared to vehicle in Sur1-/- mice. During a glucose tolerance test, CRN02481 significantly increased glucose excursion in both WT and Sur1-/- mice compared to the control. CRN02481 also reduced glucose- and tolbutamide-stimulated insulin secretion from healthy, control human islets similar to the effects observed with SS14 and peptide somatostatin analogs. Moreover, CRN02481 significantly decreased glucose- and amino acid-stimulated insulin secretion in islets from two infants with KATP-HI and one with Beckwith-Weideman Syndrome-HI. Taken together, these data demonstrate that a potent and selective SST5 agonist effectively prevents fasting hypoglycemia and suppresses insulin secretion not only in a KATP-HI mouse model but also in healthy human islets and islets from HI patients.


Subject(s)
Hyperinsulinism , Receptors, Somatomedin , Animals , Child , Humans , Infant , Mice , Adenosine Triphosphate/metabolism , Amino Acids/metabolism , Glucose/metabolism , Hyperinsulinism/drug therapy , Hypoglycemia/metabolism , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/metabolism , Mutation , Potassium Channels, Inwardly Rectifying/metabolism , Receptors, Somatomedin/agonists
5.
PLoS One ; 15(7): e0236892, 2020.
Article in English | MEDLINE | ID: mdl-32735622

ABSTRACT

There is a significant unmet need for a safe and effective therapy for the treatment of children with congenital hyperinsulinism. We hypothesized that amplification of the glucagon signaling pathway could ameliorate hyperinsulinism associated hypoglycemia. In order to test this we evaluated the effects of loss of Prkar1a, a negative regulator of Protein Kinase A in the context of hyperinsulinemic conditions. With reduction of Prkar1a expression, we observed a significant upregulation of hepatic gluconeogenic genes. In wild type mice receiving a continuous infusion of insulin by mini-osmotic pump, we observed a 2-fold increase in the level of circulating ketones and a more than 40-fold increase in Kiss1 expression with reduction of Prkar1a. Loss of Prkar1a in the Sur1-/- mouse model of KATP hyperinsulinism significantly attenuated fasting induced hypoglycemia, decreased the insulin/glucose ratio, and also increased the hepatic expression of Kiss1 by more than 10-fold. Together these data demonstrate that amplification of the hepatic glucagon signaling pathway is able to rescue hypoglycemia caused by hyperinsulinism.


Subject(s)
Congenital Hyperinsulinism/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Kisspeptins/genetics , Sulfonylurea Receptors/genetics , Animals , Congenital Hyperinsulinism/genetics , Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/metabolism , Disease Models, Animal , Gluconeogenesis/genetics , Glucose/metabolism , Hypoglycemia/metabolism , Insulin/metabolism , Ketones/metabolism , Kisspeptins/metabolism , Liver/metabolism , Mice , Mice, Knockout , Signal Transduction
6.
Mol Metab ; 17: 39-48, 2018 11.
Article in English | MEDLINE | ID: mdl-30174228

ABSTRACT

OBJECTIVE: Loss of insulin secretion due to failure or death of the insulin secreting ß cells is the central cause of diabetes. The cellular response to stress (endoplasmic reticulum (ER), oxidative, inflammatory) is essential to sustain normal ß cell function and survival. Pancreatic and duodenal homeobox 1 (PDX1), Activating transcription factor 4 (ATF4), and Activating transcription factor 5 (ATF5) are transcription factors implicated in ß cell survival and susceptibility to stress. Our goal was to determine if a PDX1-ATF transcriptional complex or complexes regulate ß cell survival in response to stress and to identify direct transcriptional targets. METHODS: Pdx1, Atf4 and Atf5 were silenced by viral delivery of gRNAs or shRNAs to Min6 insulinoma cells or primary murine islets. Gene expression was assessed by qPCR, RNAseq analysis, and Western blot analysis. Chromatin enrichment was measured in the Min6 ß cell line and primary isolated mouse islets by ChIPseq and ChIP PCR. Immunoprecipitation was used to assess interactions among transcription factors in Min6 cells and isolated mouse islets. Activation of caspase 3 by immunoblotting or by irreversible binding to a fluorescent inhibitor was taken as an indication of commitment to an apoptotic fate. RESULTS: RNASeq identified a set of PDX1, ATF4 and ATF5 co-regulated genes enriched in stress and apoptosis functions. We further identified stress induced interactions among PDX1, ATF4, and ATF5. PDX1 chromatin occupancy peaks were identified over composite C/EBP-ATF (CARE) motifs of 26 genes; assessment of a subset of these genes revealed co-enrichment for ATF4 and ATF5. PDX1 occupancy over CARE motifs was conserved in the human orthologs of 9 of these genes. Of these, Glutamate Pyruvate Transaminase 2 (Gpt2), Cation transport regulator 1 (Chac1), and Solute Carrier Family 7 Member 1 (Slc7a1) induction by stress was conserved in human islets and abrogated by deficiency of Pdx1, Atf4, and Atf5 in Min6 cells. Deficiency of Gpt2 reduced ß cell susceptibility to stress induced apoptosis in both Min6 cells and primary islets. CONCLUSIONS: Our results identify a novel PDX1 stress inducible complex (es) that regulates expression of stress and apoptosis genes to govern ß cell survival.


Subject(s)
Activating Transcription Factors/physiology , Homeodomain Proteins/physiology , Insulin-Secreting Cells/cytology , Trans-Activators/physiology , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/physiology , Activating Transcription Factors/metabolism , Animals , Apoptosis/physiology , Cell Line, Tumor , Cell Survival/physiology , Diabetes Mellitus/metabolism , Disease Models, Animal , Endoplasmic Reticulum/physiology , Gene Expression Regulation/genetics , Genes, Homeobox , Homeodomain Proteins/metabolism , Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism , Male , Mice , Stress, Physiological/physiology , Trans-Activators/metabolism , Transcriptome/genetics
7.
Proc Natl Acad Sci U S A ; 114(6): 1341-1346, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28115692

ABSTRACT

The stress response and cell survival are necessary for normal pancreatic ß-cell function, glucose homeostasis, and prevention of diabetes. The homeodomain transcription factor and human diabetes gene pancreas/duodenum homeobox protein 1 (Pdx1) regulates ß-cell survival and endoplasmic reticulum stress susceptibility, in part through direct regulation of activating transcription factor 4 (Atf4). Here we show that Atf5, a close but less-studied relative of Atf4, is also a target of Pdx1 and is critical for ß-cell survival under stress conditions. Pdx1 deficiency led to decreased Atf5 transcript, and primary islet ChIP-sequencing localized PDX1 to the Atf5 promoter, implicating Atf5 as a PDX1 target. Atf5 expression was stress inducible and enriched in ß cells. Importantly, Atf5 deficiency decreased survival under stress conditions. Loss-of-function and chromatin occupancy experiments positioned Atf5 downstream of and parallel to Atf4 in the regulation of eIF4E-binding protein 1 (4ebp1), a mammalian target of rapamycin (mTOR) pathway component that inhibits protein translation. Accordingly, Atf5 deficiency attenuated stress suppression of global translation, likely enhancing the susceptibility of ß cells to stress-induced apoptosis. Thus, we identify ATF5 as a member of the transcriptional network governing pancreatic ß-cell survival during stress.


Subject(s)
Activating Transcription Factors/genetics , Apoptosis/genetics , Endoplasmic Reticulum Stress/genetics , Insulin-Secreting Cells/metabolism , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Activating Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Cells, Cultured , Eukaryotic Initiation Factors , Gene Expression Regulation , Gene Regulatory Networks , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Phosphoproteins/genetics , Phosphoproteins/metabolism , Promoter Regions, Genetic/genetics , Trans-Activators/genetics , Trans-Activators/metabolism
8.
J Clin Invest ; 127(1): 215-229, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27941246

ABSTRACT

The recognition of ß cell dedifferentiation in type 2 diabetes raises the translational relevance of mechanisms that direct and maintain ß cell identity. LIM domain-binding protein 1 (LDB1) nucleates multimeric transcriptional complexes and establishes promoter-enhancer looping, thereby directing fate assignment and maturation of progenitor populations. Many terminally differentiated endocrine cell types, however, remain enriched for LDB1, but its role is unknown. Here, we have demonstrated a requirement for LDB1 in maintaining the terminally differentiated status of pancreatic ß cells. Inducible ablation of LDB1 in mature ß cells impaired insulin secretion and glucose homeostasis. Transcriptomic analysis of LDB1-depleted ß cells revealed the collapse of the terminally differentiated gene program, indicated by a loss of ß cell identity genes and induction of the endocrine progenitor factor neurogenin 3 (NEUROG3). Lineage tracing confirmed that LDB1-depleted, insulin-negative ß cells express NEUROG3 but do not adopt alternate endocrine cell fates. In primary mouse islets, LDB1 and its LIM homeodomain-binding partner islet 1 (ISL1) were coenriched at chromatin sites occupied by pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), forkhead box A2 (FOXA2), and NK2 homeobox 2 (NKX2.2) - factors that co-occupy active enhancers in 3D chromatin domains in human islets. Indeed, LDB1 was enriched at active enhancers in human islets. Thus, LDB1 maintains the terminally differentiated state of ß cells and is a component of active enhancers in both murine and human islets.


Subject(s)
Cell Differentiation , DNA-Binding Proteins/metabolism , Insulin-Secreting Cells/metabolism , LIM Domain Proteins/metabolism , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA-Binding Proteins/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Insulin-Secreting Cells/pathology , LIM Domain Proteins/genetics , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Zebrafish Proteins
9.
J Immunol ; 191(8): 4358-66, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24048902

ABSTRACT

NLRP3 assembles an inflammasome complex that activates caspase-1 upon sensing various danger signals derived from pathogenic infection, tissue damage, and environmental toxins. How NLRP3 senses these various stimuli is still poorly understood, but mitochondria and mitochondrial reactive oxygen species have been proposed to play a critical role in NLRP3 activation. In this article, we provide evidence that the mitochondrial antiviral signaling protein MAVS associates with NLRP3 and facilitates its oligomerization leading to caspase-1 activation. In reconstituted 293T cells, full-length MAVS promoted NLRP3-dependent caspase-1 activation, whereas a C-terminal transmembrane domain-truncated mutant of MAVS (MAVS-ΔTM) did not. MAVS, but not MAVS-ΔTM, interacted with NLRP3 and triggered the oligomerization of NLRP3, suggesting that mitochondrial localization of MAVS and intact MAVS signaling are essential for activating the NLRP3 inflammasome. Supporting this, activation of MAVS signaling by Sendai virus infection promoted NLRP3-dependent caspase-1 activation, whereas knocking down MAVS expression clearly attenuated the activation of NLRP3 inflammasome by Sendai virus in THP-1 and mouse macrophages. Taken together, our results suggest that MAVS facilitates the recruitment of NLRP3 to the mitochondria and may enhance its oligomerization and activation by bringing it in close proximity to mitochondrial reactive oxygen species.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Macrophages/immunology , Mitochondria/metabolism , Respirovirus Infections/immunology , Adaptor Proteins, Signal Transducing/genetics , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Caspase 1/metabolism , Cell Line , Enzyme Activation , HEK293 Cells , Humans , Inflammasomes/immunology , Macrophages/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , RNA Interference , RNA, Small Interfering , Reactive Oxygen Species/metabolism , Sendai virus/immunology , Signal Transduction/immunology
10.
J Biol Chem ; 287(43): 36617-22, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-22948162

ABSTRACT

The NLRP3 inflammasome is a key component of the innate immune response to pathogenic infection and tissue damage. It is also involved in the pathogenesis of a number of human diseases, including gouty arthritis, silicosis, atherosclerosis, and type 2 diabetes. The assembly of the NLRP3 inflammasome requires a priming signal derived from pattern recognition or cytokine receptors, followed by a second signal derived from extracellular ATP, pore-forming toxins, or crystalline materials. How these two signals activate the NLRP3 inflammasome is not yet clear. Here, we show that in mouse macrophages, signaling by the pattern recognition receptor TLR4 through MyD88 can rapidly and non-transcriptionally prime NLRP3 by stimulating its deubiquitination. This process is dependent on mitochondrial reactive oxygen species production and can be inhibited by antioxidants. We further show that signaling by ATP can also induce deubiquitination of NLRP3 by a mechanism that is not sensitive to antioxidants. Pharmacological inhibition of NLRP3 deubiquitination completely blocked NLRP3 activation in both mouse and human cells, indicating that deubiquitination of NLRP3 is required for its activation. Our findings suggest that NLRP3 is activated by a two-step deubiquitination mechanism initiated by Toll-like receptor signaling and mitochondrial reactive oxygen species and further potentiated by ATP, which could explain how NLRP3 is activated by diverse danger signals.


Subject(s)
Carrier Proteins/metabolism , Inflammasomes/metabolism , Macrophages/metabolism , Signal Transduction , Ubiquitination , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Carrier Proteins/genetics , Cells, Cultured , Humans , Inflammasomes/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Macrophages/pathology , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
11.
Nat Immunol ; 11(5): 385-93, 2010 May.
Article in English | MEDLINE | ID: mdl-20351693

ABSTRACT

Francisella tularensis, the causative agent of tularemia, infects host macrophages, which triggers production of the proinflammatory cytokines interleukin 1beta (IL-1beta) and IL-18. We elucidate here how host macrophages recognize F. tularensis and elicit this proinflammatory response. Using mice deficient in the DNA-sensing inflammasome component AIM2, we demonstrate here that AIM2 is required for sensing F. tularensis. AIM2-deficient mice were extremely susceptible to F. tularensis infection, with greater mortality and bacterial burden than that of wild-type mice. Caspase-1 activation, IL-1beta secretion and cell death were absent in Aim2(-/-) macrophages in response to F. tularensis infection or the presence of cytoplasmic DNA. Our study identifies AIM2 as a crucial sensor of F. tularensis infection and provides genetic proof of its critical role in host innate immunity to intracellular pathogens.


Subject(s)
Francisella tularensis/immunology , Immunity, Innate , Macrophages/metabolism , Multiprotein Complexes/metabolism , Nuclear Proteins/immunology , Nuclear Proteins/metabolism , Tularemia/immunology , Animals , Calcium Signaling/immunology , Caspase 1/genetics , Caspase 1/immunology , Caspase 1/metabolism , Cells, Cultured , DNA-Binding Proteins , Francisella tularensis/pathogenicity , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-3/metabolism , Interferon Type I/immunology , Interleukin-1beta/biosynthesis , Interleukin-1beta/genetics , Interleukin-1beta/immunology , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/immunology , L-Lactate Dehydrogenase/metabolism , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Knockout , Multiprotein Complexes/genetics , Multiprotein Complexes/immunology , Nuclear Proteins/genetics , Protein Multimerization , Tularemia/genetics , Tularemia/metabolism
12.
J Biol Chem ; 285(13): 9792-9802, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20093358

ABSTRACT

Activation of the inflammasome generates the pro-inflammatory cytokines interleukin-1 beta and -18, which are important mediators of inflammation. Abnormal activation of the inflammasome leads to many inflammatory diseases, including gout, silicosis, neurodegeneration, and genetically inherited periodic fever syndromes. Therefore, identification of small molecule inhibitors that target the inflammasome is an important step toward developing effective therapeutics for the treatment of inflammation. Here, we show that the herbal NF-kappaB inhibitory compound parthenolide inhibits the activity of multiple inflammasomes in macrophages by directly inhibiting the protease activity of caspase-1. Additional investigations of other NF-kappaB inhibitors revealed that the synthetic I kappaB kinase-beta inhibitor Bay 11-7082 and structurally related vinyl sulfone compounds selectively inhibit NLRP3 inflammasome activity in macrophages independent of their inhibitory effect on NF-kappaB activity. In vitro assays of the effect of parthenolide and Bay 11-7082 on the ATPase activity of NLRP3 demonstrated that both compounds inhibit the ATPase activity of NLRP3, suggesting that the inhibitory effect of these compounds on inflammasome activity could be mediated in part through their effect on the ATPase activity of NLRP3. Our results thus elucidate the molecular mechanism for the therapeutic anti-inflammatory activity of parthenolide and identify vinyl sulfones as a new class of potential therapeutics that target the NLRP3 inflammasome.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Nitriles/pharmacology , Sesquiterpenes/pharmacology , Sulfones/pharmacology , Animals , Bone Marrow Cells/metabolism , Caspase 1/metabolism , Cell Death , Humans , Immunoblotting , L-Lactate Dehydrogenase/metabolism , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Sulfones/chemistry
13.
Mol Cell ; 28(2): 214-27, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17964261

ABSTRACT

The molecular mechanism by which mutations in the cytoskeleton-organizing protein PSTPIP1 cause the autoinflammatory PAPA syndrome is still elusive. Here, we demonstrate that PSTPIP1 requires the familial Mediterranean fever protein pyrin to assemble the ASC pyroptosome, a molecular platform that recruits and activates caspase-1. We provide evidence that pyrin is a cytosolic receptor for PSTPIP1. Pyrin exists as a homotrimer in an autoinhibited state due to intramolecular interactions between its pyrin domain (PYD) and B-box. Ligation by PSTPIP1, which is also a homotrimer, activates pyrin by unmasking its PYD, thereby allowing it to interact with ASC and facilitate ASC oligomerization into an active ASC pyroptosome. Because of their high binding affinity to pyrin's B-box, PAPA-associated PSTPIP1 mutants were found to be more effective than WT PSTPIP1 in inducing pyrin activation. Therefore, constitutive ligation and activation of pyrin by mutant PSTPIP1 proteins explain the autoinflammatory phenotype seen in PAPA syndrome.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Caspase 1/metabolism , Cytoskeletal Proteins/metabolism , Familial Mediterranean Fever/metabolism , Monocytes/metabolism , Mutation , Adaptor Proteins, Signal Transducing/genetics , CARD Signaling Adaptor Proteins , Cell Line , Colchicine/pharmacology , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Dose-Response Relationship, Drug , Enzyme Activation , Familial Mediterranean Fever/genetics , Familial Mediterranean Fever/immunology , Genetic Vectors , Genotype , Humans , Immunity, Innate , Interleukin-1beta/metabolism , Monocytes/drug effects , Multiprotein Complexes/metabolism , Nocodazole/pharmacology , Phenotype , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Pyrin , Recombinant Fusion Proteins/metabolism , Retroviridae/genetics , Transfection , Tubulin Modulators/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...