Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
J Assist Reprod Genet ; 36(11): 2345-2355, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31696385

ABSTRACT

PURPOSE: To investigate whether the ability of human spermatozoa to decondense in vitro in the presence of heparin (Hep) and glutathione (GSH) is related to assisted reproduction (ART) success. METHODS: Cross-sectional pilot study involving male partners of 129 infertile couples undergoing ICSI with (45) or without (84) donor oocytes at two infertility clinics in CABA, Argentina, between October 2012 and December 2013. In vitro decondensation kinetics with Hep and GSH and DNA fragmentation (TUNEL) were determined on the same sample used for ICSI. The possible relationship of decondensation parameters (maximum decondensation and decondensation velocity) and TUNEL values with ART success was evaluated. RESULTS: Embryo quality correlated positively with decondensation velocity (D60/D30) (Spearman's correlation, p < 0.05). According to D60/D30 values, patients were classified as slow decondensers (SlowD) (n = 68) or fast decondensers (FastD) (n = 61). Embryo quality was better in FastD (unpaired t test, p < 0.05). FastD and SlowD were subdivided according to use of donor oocytes. Among SlowD, biochemical and clinical pregnancy rates per transfer were significantly higher in donor (n = 19) vs. in non-donor (n = 31) cycles (Fisher's exact test, p < 0.05). TUNEL values were not related to embryo quality, but no clinical pregnancies or live births were achieved in TUNEL+ SlowD (n = 7). CONCLUSION: Decondensation kinetics of human spermatozoa in vitro with Hep and GSH could be related to embryo quality and ART success.


Subject(s)
Embryo, Mammalian/physiology , Spermatozoa/physiology , Argentina , Cross-Sectional Studies , DNA Fragmentation , Female , Fertilization in Vitro/methods , Humans , In Situ Nick-End Labeling/methods , Infertility/therapy , Live Birth , Male , Oocytes/physiology , Pilot Projects , Pregnancy , Pregnancy Rate , Sperm Injections, Intracytoplasmic/methods
2.
Hum Reprod ; 27(7): 1930-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22552691

ABSTRACT

BACKGROUND: Human sperm nuclear decondensation in vivo involves protamine disulfide bond reduction by glutathione (GSH) and protamine/histone exchange, presumably with heparan sulfate (HS) as the protamine acceptor. The aim of the present study was to test the hypothesis that these two events occur simultaneously rather than sequentially, as has been hitherto accepted, and to test for the presence of HS in the human oocyte. METHODS: Spermatozoa and isolated sperm nuclei obtained from normal volunteers were exposed in vitro to heparin, the functional analogue of HS and either GSH or dithiothreitol (DTT) as the disulfide reducing agent. Decondensing reagents were added either simultaneously or sequentially. Percentage sperm nuclear decondensation was assayed by phase contrast microscopy. Thiol reduced status of isolated sperm nuclei was evaluated both indirectly [acridine orange (AO) staining of acid-denatured DNA] and directly [monobromobimane (mBBr) staining of protamine-free thiols]. The presence of HS in mature metaphase II (MII) human oocytes was analyzed by immunocytochemistry. RESULTS: Sequential addition of reagents always resulted in significantly lower decondensation if GSH was used as the disulfide bond reducer (P < 0.05 for sperm and P < 0.001 for nuclei), but only when heparin was used first, when DTT was the disulfide reducing agent (P < 0.05 for sperm and P < 0.01 for nuclei). Both AO staining of DNA and mBBr staining of protamines revealed that the addition of heparin to GSH but not to DTT significantly increased the thiol reduced status of sperm chromatin. HS was detected in the ooplasm of zona-free MII human oocytes. CONCLUSIONS: The results presented in this paper clearly show that heparin enhances the sperm chromatin thiol reducing activity of GSH in vitro, suggesting that in vivo thiol reduction and protamine/histone exchange could occur as simultaneous, rather than sequential, events. We also demonstrate for the first time the presence of HS in the human oocyte.


Subject(s)
Heparin/pharmacology , Protamines/chemistry , Spermatozoa/metabolism , Cell Nucleus/metabolism , Disulfides , Dithiothreitol/pharmacology , Female , Glutathione/metabolism , Heparin/chemistry , Humans , Immunohistochemistry/methods , In Vitro Techniques , Male , Microscopy, Phase-Contrast/methods , Oocytes/cytology , Sulfhydryl Compounds/chemistry , Time Factors
3.
Hum Reprod ; 23(5): 1145-50, 2008 May.
Article in English | MEDLINE | ID: mdl-18287106

ABSTRACT

BACKGROUND: Previous results from our laboratory have led us to propose heparan sulfate (HS) as a putative protamine acceptor during human sperm decondensation in vivo. The aim of this paper was to investigate the presence of glycosaminoglycans in the mammalian oocyte in an effort to better support this contention. METHODS: Two experimental approaches are used: oocyte labeling to identify the presence of HS and analysis of sperm decondensing ability of fresh oocytes in the presence or absence of specific glycosidases. RESULTS: Staining of mouse zona-intact oocytes with the fluorescent cationic dye, Rubipy, at pH 1.5 allowed for the detection of sulfate residues in the ooplasm by confocal microscopy. HS was detected in the ooplasm by immunocytochemistry. A sperm decondensation microassay using heparin and glutathione was successfully developed. The same level of sperm decondensation could be attained when heparin was replaced by mouse zona-free oocytes. Addition of heparinase to the oocyte/glutathione mixture significantly reduced sperm decondensation (P = 0.0159), while there was no effect following addition of either chondroitinase ABC or hyaluronidase. CONCLUSIONS: The results presented in this paper demonstrate for the first time that HS is present in the mammalian oocyte and show that HS is necessary for fresh oocytes to express their sperm decondensing ability in vitro.


Subject(s)
Heparitin Sulfate/metabolism , Oocytes/metabolism , Spermatozoa/physiology , Animals , Cell Nucleus/physiology , Cell Nucleus/ultrastructure , Chondroitin ABC Lyase/metabolism , Female , Heparin Lyase/metabolism , Heparitin Sulfate/immunology , Humans , Hyaluronoglucosaminidase/metabolism , Immunohistochemistry , Male , Mice , Microscopy, Confocal
4.
Biocell ; 31(2): 237-245, ago. 2007. graf
Article in English | LILACS | ID: lil-491530

ABSTRACT

Interaction between parenchyma and stroma is essential for organogenesis, morphogenesis, and differentiation. Mammary gland has being the chosen model for developmental biologist because the most striking changes in morphology and function take place after birth. We have demonstrated a regulation of triglyceride accumulation by protein factors synthesized by normal mouse mammary gland epithelial cells (NMMG), acting on a cell line, 3T3-L1, long used as a model for adipogenesis. In this paper, we demonstrate that this inhibitory effect seems to be shared by other cells of epithelial origin but not by other cell types. We found a regulation of cell proliferation when NMMG cells are cultured in the presence of conditioned media from Swiss 3T3 or 3T3-L1 cells. We found a possible point of regulation for the mammary factor on a key enzyme of the lipid metabolic pathway, the glycerol-3-phosphate dehydrogenase. The inhibitory factor seems to have an effect on this enzyme's activity and reduces it. The results presented herein contribute to the understanding of cell-cell communication in a model of a normal mammary gland.


Subject(s)
Humans , Animals , Rats , Adipocytes, White/cytology , Adipocytes, White/metabolism , Epithelial Cells/cytology , Mammary Glands, Animal/cytology , Culture Media, Conditioned/pharmacology , Triglycerides/metabolism , Cell Differentiation , Cells, Cultured , Cell Communication/physiology , HeLa Cells , Cell Proliferation
5.
Biocell ; 31(2): 237-245, ago. 2007. graf
Article in English | BINACIS | ID: bin-122877

ABSTRACT

Interaction between parenchyma and stroma is essential for organogenesis, morphogenesis, and differentiation. Mammary gland has being the chosen model for developmental biologist because the most striking changes in morphology and function take place after birth. We have demonstrated a regulation of triglyceride accumulation by protein factors synthesized by normal mouse mammary gland epithelial cells (NMMG), acting on a cell line, 3T3-L1, long used as a model for adipogenesis. In this paper, we demonstrate that this inhibitory effect seems to be shared by other cells of epithelial origin but not by other cell types. We found a regulation of cell proliferation when NMMG cells are cultured in the presence of conditioned media from Swiss 3T3 or 3T3-L1 cells. We found a possible point of regulation for the mammary factor on a key enzyme of the lipid metabolic pathway, the glycerol-3-phosphate dehydrogenase. The inhibitory factor seems to have an effect on this enzymes activity and reduces it. The results presented herein contribute to the understanding of cell-cell communication in a model of a normal mammary gland.(AU)


Subject(s)
Humans , Animals , Animals , Rats , Culture Media, Conditioned/pharmacology , Epithelial Cells/cytology , Mammary Glands, Animal/cytology , Triglycerides/metabolism , 3T3-L1 Cells , Adipocytes, White/cytology , Adipocytes, White/metabolism , HeLa Cells , Cell Communication/physiology , Cell Differentiation , Cell Proliferation , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...