Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glycobiology ; 11(7): 593-603, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11447139

ABSTRACT

A chimeric protein containing the catalytic domain of Trypanosoma cruzi trans-sialidase, the transmembrane domain of the major envelope glycoprotein of the baculovirus (gp67), and the signal peptide of ecdysteroid glucosyltransferase of the baculovirus was expressed under the control of the very late promoter p10 in baculovirus-infected lepidopteran cells. The recombinant protein was found to be enzymatically active. Three days after infection, equal amounts of activity were found associated to the plasma membrane and in the infection medium, both forms having the same apparent molecular weight and being N-glycosylated. When exogenous galactosylated acceptors (lactose or asialo-alpha1-acid glycoprotein) were added in the culture medium of cells infected with the recombinant baculovirus in the presence of a sialylated donor, a sialylation could be observed. Therefore, we propose the use of trans-sialidase as a potential tool for sialylation of glycoconjugates in the baculovirus-insect cells system.


Subject(s)
Baculoviridae/genetics , Membrane Glycoproteins/genetics , N-Acetylneuraminic Acid/metabolism , Neuraminidase/genetics , Trypanosoma cruzi/enzymology , Animals , Base Sequence , Blotting, Western , Catalytic Domain , Cell Line , DNA Primers , DNA, Complementary , Flow Cytometry , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Neuraminidase/chemistry , Neuraminidase/metabolism , Spodoptera
2.
Biochim Biophys Acta ; 1427(1): 49-61, 1999 Mar 14.
Article in English | MEDLINE | ID: mdl-10082987

ABSTRACT

The enzyme activities involved in O-glycosylation have been studied in three insect cell lines, Spodoptera frugiperda (Sf-9), Mamestra brassicae (Mb) and Trichoplusia ni (Tn) cultured in two different serum-free media. The structural features of O-glycoproteins in these insect cells were investigated using a panel of lectins and the glycosyltransferase activities involved in O-glycan biosynthesis of insect cells were measured (i.e., UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, UDP-Gal:core-1 beta1, 3-galactosyltransferase, CMP-NeuAc:Galbeta1-3GalNAc alpha2, 3-sialyltransferase, and UDP-Gal:Galbeta1-3GalNAc alpha1, 4-galactosyltransferase activities). First, we show that O-glycosylation potential depends on cell type. All three lepidopteran cell lines express GalNAcalpha-O-Ser/Thr antigen, which is recognized by soy bean agglutinin and reflects high UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase activity. Capillary electrophoresis and mass spectrometry studies revealed the presence of at least two different UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases in these insect cells. Only some O-linked GalNAc residues are further processed by the addition of beta1,3-linked Gal residues to form T-antigen, as shown by the binding of peanut agglutinin. This reflects relative low levels of UDP-Gal:core-1 beta1,3-galactosyltransferase in insect cells, as compared to those observed in mammalian control cells. In addition, we detected strong binding of Bandeiraea simplicifolia lectin-I isolectin B4 to Mamestra brassicae endogenous glycoproteins, which suggests a high activity of a UDP-Gal:Galbeta1-3GalNAc alpha1, 4-galactosyltransferase. This explains the absence of PNA binding to Mamestra brassicae glycoproteins. Furthermore, our results substantiated that there is no sialyltransferase activity and, therefore, no terminal sialic acid production by these cell lines. Finally, we found that the culture medium influences the O-glycosylation potential of each cell line.


Subject(s)
Glycoproteins/biosynthesis , Lepidoptera/metabolism , Animals , Cell Line , Culture Media, Serum-Free , Glycosylation , Glycosyltransferases/metabolism , HT29 Cells , Humans , Lectins , Lepidoptera/genetics , Polysaccharides/analysis , Spodoptera/metabolism
3.
J Biol Chem ; 273(50): 33644-51, 1998 Dec 11.
Article in English | MEDLINE | ID: mdl-9837949

ABSTRACT

The binding of Bandeiraea simplicifolia lectin-I isolectin B4 on the endogenous glycoproteins of different insect cell lines led us to characterize for the first time a UDP-Gal:Galbeta1-3GalNAc alpha1, 4-galactosyltransferase in a Mamestra brassicae cell line (Mb). The study of the acceptor specificity indicated that the Mb alpha-galactosyltransferase prefers Galbeta1-3-R as acceptor, and among such glycans, the relative substrate activity Vmax/Km was equal to 20 microliters.mg-1.h-1 for Galbetal-3GlcNAcbeta1-O-octyl and to 330 microliters.mg-1.h-1 for Galbeta1-3GalNAcalpha-1-O-benzyl, showing clearly that Galbeta1-3GalNAc disaccharide was the more suitable acceptor substrate for Mb alpha-galactosyltransferase activity. Nuclear magnetic resonance and mass spectrometry data allowed us to establish that the Mb alpha-galactosyltransferase synthesizes one unique product, Galalpha1-4Galbeta1-3GalNAcalpha1-O-benzyl. The Galbeta1-3GalNAc disaccharide is usually present on O-glycosylation sites of numerous asialoglycoproteins and at the nonreducing end of some glycolipids. We observed that Mb alpha1,4-galactosyltransferase catalyzed the transfer of galactose onto both natural acceptors. Finally, we demonstrated that the trisaccharide Galalpha1-4Galbeta1-3GalNAcalpha1-O-benzyl was able to inhibit anti-PK monoclonal antibody-mediated hemagglutination of human blood group PK1 and PK2 erythrocytes.


Subject(s)
Galactosyltransferases/metabolism , Moths/enzymology , Plant Lectins , Animals , Asialoglycoproteins/metabolism , Cell Line , Galactose/metabolism , Galactosyltransferases/chemistry , Glycolipids/metabolism , Humans , Lectins/metabolism , Moths/cytology , Protein Binding , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spodoptera/cytology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...