Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Food Sci Nutr ; 49(8): 682-9, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19690994

ABSTRACT

The ILSI Research Foundation convened a cross-disciplinary working group to examine current approaches for assessing dose-response and identifying safe levels of intake or exposure for four categories of bioactive agents-food allergens, nutrients, pathogenic microorganisms, and environmental chemicals. This effort generated a common analytical framework-the Key Events Dose-Response Framework (KEDRF)-for systematically examining key events that occur between the initial dose of a bioactive agent and the effect of concern. Individual key events are considered with regard to factors that influence the dose-response relationship and factors that underlie variability in that relationship. This approach illuminates the connection between the processes occurring at the level of fundamental biology and the outcomes observed at the individual and population levels. Thus, it promotes an evidence-based approach for using mechanistic data to reduce reliance on default assumptions, to quantify variability, and to better characterize biological thresholds. This paper provides an overview of the KEDRF and introduces a series of four companion papers that illustrate initial application of the approach to a range of bioactive agents.


Subject(s)
Allergens/adverse effects , Environmental Pollutants/adverse effects , Food Microbiology , Food , Algorithms , Dose-Response Relationship, Drug , Food Hypersensitivity , Humans , Uncertainty
2.
Crit Rev Food Sci Nutr ; 49(8): 708-17, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19690996

ABSTRACT

The methodology used to establish tolerable upper intake levels (UL) for nutrients borrows heavily from risk assessment methods used by toxicologists. Empirical data are used to identify intake levels associated with adverse effects, and Uncertainty Factors (UF) are applied to establish ULs, which in turn inform public health decisions and standards. Use of UFs reflects lack of knowledge regarding the biological events that underlie response to the intake of a given nutrient, and also regarding the sources of variability in that response. In this paper, the Key Events Dose-Response Framework (KEDRF) is used to systematically consider the major biological steps that lead from the intake of the preformed vitamin A to excess systemic levels, and subsequently to increased risk of adverse effects. Each step is examined with regard to factors that influence whether there is progression toward the adverse effect of concern. The role of homeostatic mechanisms is discussed, along with the types of research needed to improve understanding of dose-response for vitamin A. This initial analysis illustrates the potential of the KEDRF as a useful analytical tool for integrating current knowledge regarding dose-response, generating questions that will focus future research efforts, and clarifying how improved knowledge and data could be used to reduce reliance on UFs.


Subject(s)
Vitamin A Deficiency/metabolism , Vitamin A/administration & dosage , Vitamin A/adverse effects , Algorithms , Drug Overdose , Homeostasis , Humans , Intestinal Mucosa/metabolism , Liver/metabolism , Vitamin A/metabolism
3.
Crit Rev Food Sci Nutr ; 49(8): 718-28, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19690997

ABSTRACT

The Key Events Dose-Response Framework (KEDRF) is an analytical approach that facilitates the use of currently available data to gain insight regarding dose-response relationships. The use of the KEDRF also helps identify critical knowledge gaps that once filled, will reduce reliance on assumptions. The present study considers how the KEDRF might be applied to pathogenic microorganisms, using fetal listeriosis resulting from maternal ingestion of food contaminated with L. monocytogenes as an initial example. Major biological events along the pathway between food ingestion and the endpoint of concern are systematically considered with regard to dose (i.e., number of organisms), pathogen factors (e.g., virulence), and protective host mechanisms (e.g., immune response or other homeostatic mechanisms). It is concluded that the KEDRF provides a useful structure for systematically evaluating the complex array of host and pathogen factors that influence the dose-response relationship. In particular, the KEDRF supports efforts to specify and quantify the sources of variability, a prerequisite to strengthening the scientific basis for food safety decision making.


Subject(s)
Food Microbiology , Listeria monocytogenes , Listeriosis/prevention & control , Disease Outbreaks , Female , Homeostasis , Humans , Pregnancy , Pregnancy Complications, Infectious , Public Health
4.
Crit Rev Food Sci Nutr ; 49(8): 729-39, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19690998

ABSTRACT

Food allergies are caused by immunological reactions in individuals sensitized to normal protein components of foods. For any given sensitized individual, the severity of a reaction is generally assumed to be proportional to the dose of allergenic protein. There is substantial clinical evidence that "threshold" doses exist for the elicitation of an allergic reaction; however, the threshold (i.e., lowest dose that elicits a reaction) varies substantially across the sensitized population. Current approaches to protecting sensitized individuals from exposure to food allergens are highly qualitative (i.e., they rely on food avoidance). The Key Events Dose-Response Framework is an analytical approach for refining understanding of the biological basis of the dose-response. Application of this approach to food allergy provides a foundation for a more rigorous quantitative understanding of variability in allergic response. This study reviews the allergic disease process and the current approaches to identifying thresholds for food allergens. The pathway of key biological events occurring between food intake and allergic response is considered, along with factors that may determine the nature and severity of response to food allergens. Data needs, as well as implications for identifying thresholds, and for characterizing variability in thresholds, are also discussed.


Subject(s)
Allergens/adverse effects , Food Hypersensitivity , Algorithms , Dose-Response Relationship, Immunologic , Humans , Public Health
5.
Birth Defects Res A Clin Mol Teratol ; 70(12): 902-11, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15558547

ABSTRACT

Regulatory agencies are increasingly called upon to review large numbers of environmental contaminants that have not been characterized for their potential to pose a health risk. Additionally, there is special interest in protecting potentially sensitive subpopulations and identifying developmental toxicants that may be present in the environment. Thus, there is an urgent need for efficient methods to screen large numbers of chemicals for their potential to pose a developmental hazard. One potential screening method involves the use of statistically based structure-activity relationship (SAR) tools to predict activity of untested chemicals. Such systems rely on statistical analyses to discern relationships between structure and activity for a training set of substances. Predictions can then be made for an untested substance as long as its structural features are encompassed by chemicals of the training set. In theory, such systems could assist regulatory agencies in their screening efforts; however, to date, there has been little independent evaluation of these tools for this use. To contribute to such an evaluation, the International Life Sciences Institute Risk Science Institute (ILSI RSI) convened a Working Group to examine methodology used to construct statistically based SAR systems for developmental toxicity. This document reports on the deliberations of the Working Group, which concluded that an improved process is needed for utilizing developmental toxicity data in the construction of statistically based SAR models. The process must be objective, reproducible, rational and transparent. Moreover, it must be informed by the expertise of developmental toxicologists and biologists and must be subject to peer review.


Subject(s)
Congenital Abnormalities/etiology , Models, Statistical , Teratogens/pharmacokinetics , Teratogens/toxicity , Fetal Development/drug effects , Humans , Risk Assessment , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...