Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22277695

ABSTRACT

During the COVID-19 pandemic, some countries, such as Australia, China, Iceland, New Zealand, Thailand, and Vietnam successfully implemented an elimination strategy, enacting strict border control and periods of lockdowns to end community transmission. Atlantic Canada and Canadas territories implemented similar policies, and reported long periods with no community cases. In Newfoundland and Labrador (NL), Nova Scotia, and Prince Edward Island a median of 80% or more of daily reported cases were travel-related from July 1, 2020 to May 31, 2021. With increasing vaccination coverage, it may be appropriate to exit an elimination strategy, but most existing epidemiological frameworks are applicable only to situations where most cases occur in the community, and are not appropriate for regions that have implemented an elimination strategy. To inform the pandemic response in regions that are implementing an elimination strategy, we extend importation modelling to consider post-arrival travel restrictions, and pharmaceutical and non-pharmaceutical interventions in the local community. We find that shortly after the Omicron variant had begun spreading in Canada, the expected daily number of spillovers, infections spread to NL community members from travelers and their close contacts, was higher than any time previously in the pandemic. By December 24, 2021, the expected number of spillovers was 44% higher than the previous high, which occurred in late July 2021 shortly after travel restrictions were first relaxed. We develop a method to assess the characteristics of potential future community outbreaks in regions that are implementing an elimination strategy. We apply this method to predict the effect of variant and vaccination coverage on the size of hypothetical community outbreaks in Mount Pearl, a suburb of the St. Johns metropolitan area in NL. Our methodology can be used to evaluate alternative plans to relax public health restrictions when vaccine coverage is high in regions that have implemented an elimination strategy. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21261932

ABSTRACT

BackgroundSince December 2020, public health agencies have implemented a variety of vaccination strategies to curb the spread of SARS-CoV-2, along with pre-existing Nonpharmaceutical Interventions (NPIs). Initial strategy focused on vaccinating the elderly to prevent hospitalizations and deaths. With vaccines becoming available to the broader population, we aimed to determine the optimal strategy to enable the safe lifting of NPIs while avoiding virus resurgence. MethodsWe developed a compartmental deterministic SEIR model to simulate the lifting of NPIs under different vaccination rollout scenarios. Using case and vaccination data from Toronto, Canada between December 28, 2020 and May 19, 2021, we estimated transmission throughout past stages of NPI escalation/relaxation to compare the impact of lifting NPIs on different dates on cases, hospitalizations, and deaths, given varying degrees of vaccine coverages by 20-year age groups, accounting for waning immunity. ResultsWe found that, once coverage among the elderly is high enough (80% with at least one dose), the main age groups to target are 20-39 and 40-59 years, whereby first-dose coverage of at least 70% by mid-June 2021 is needed to minimize the possibility of resurgence if NPIs are to be lifted in the summer. While a resurgence was observed for every scenario of NPI lifting, we also found that under an optimistic vaccination coverage (70% by mid-June, postponing reopening from August 2021 to September 2021can reduce case counts and severe outcomes by roughly 80% by December 31, 2021. ConclusionsOur results suggest that focusing the vaccination strategy on the working-age population can curb the spread of SARS-CoV-2. However, even with high vaccination coverage in adults, lifting NPIs to pre-pandemic levels is not advisable since a resurgence is expected to occur, especially with earlier reopening.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21257141

ABSTRACT

We consider models for the importation of a new variant COVID-19 strain in a location already seeing propagation of a resident variant. By distinguishing contaminations generated by imported cases from those originating in the community, we are able to evaluate the contribution of importations to the dynamics of the disease in a community. We find that after an initial seeding, the role of importations becomes marginal compared to that of community-based propagation. We also evaluate the role of two travel control measures, quarantine and travel interruptions. We conclude that quarantine is an efficacious way of lowering importation rates, while travel interruptions have the potential to delay the consequences of importations but need to be applied within a very tight time window following the initial emergence of the variant.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20181057

ABSTRACT

BackgroundIn many parts of the world, restrictive non-pharmaceutical interventions (NPI) that aim to reduce contact rates, including stay-at-home orders, limitations on gatherings, and closure of public places, are being lifted, with the possibility that the epidemic resurges if alternative measures are not strong enough. Here we aim to capture the combination of use of NPIs and reopening measures which will prevent an infection rebound. MethodsWe employ an SEAIR model with household structure able to capture the stay-at-home policy (SAHP). To reflect the changes in the SAHP over the course of the epidemic, we vary the SAHP compliance rate, assuming that the time to compliance of all the people requested to stay-at-home follows a Gamma distribution. Using confirmed case data for the City of Toronto, we evaluate basic and instantaneous reproduction numbers and simulate how the average household size, the stay-at-home rate, the efficiency and duration of SAHP implementation, affect the outbreak trajectory. FindingsThe estimated basic reproduction number R_0 was 2.36 (95% CI: 2.28, 2.45) in Toronto. After the implementation of the SAHP, the contact rate outside the household fell by 39%. When people properly respect the SAHP, the outbreak can be quickly controlled, but extending its duration beyond two months (65 days) had little effect. Our findings also suggest that to avoid a large rebound of the epidemic, the average number of contacts per person per day should be kept below nine. This study suggests that fully reopening schools, offices, and other activities, is possible if the use of other NPIs is strictly adhered to. InterpretationOur model confirmed that the SAHP implemented in Toronto had a great impact in controlling the spread of COVID-19. Given the lifting of restrictive NPIs, we estimated the thresholds values of maximum number of contacts, probability of transmission and testing needed to ensure that the reopening will be safe, i.e. maintaining an Rt < 1. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSA survey on published articles was made through PubMed and Google Scholar searches. The search was conducted from March 1 to August 13, 2020 and all papers published until the end of this research were considered. The following terms were used to screen articles on mathematical models: "household structure", "epidemic model", "SARS-CoV-2", "COVID-19", "household SIR epidemic", "household SIS epidemic", "household SEIR epidemic", "quarantine, isolation model", "quarantine model dynamics", "structured model isolation". Any article showing, in the title, application of epidemic models in a specific country/region or infectious diseases rather than SARS-CoV-2 were excluded. Articles in English were considered. Added value of this studyWe develop an epidemic model with household structure to study the effects of SAHP on the infection within households and transmission of COVID-19 in Toronto. The complex model provides interesting insights into the effectiveness of SAHP, if the average number of individuals in a household changes. We found that the SAHP might not be adequate if the size of households is relatively large. We also introduce a new quantity called symptomatic diagnosis completion ratio (d_c). This indicator is defined as the ratio of cumulative reported cases and the cumulative cases by episode date at time t, and it is used in the model to inform the implementation of SAHP. If cases are diagnosed at the time of symptom onset, isolation will be enforced immediately. A delay in detecting cases will lead to a delay in isolation, with subsequent increase in the transmission of the infection. Comparing different scenarios (before and after reopening phases), we were able to identify thresholds of these factors which mainly affect the spread of the infection: the number of daily tests, average number of contacts per individual, and probability of transmission of the virus. Our results show that if any of the three above mentioned factors is reduced, then the other two need to be adjusted to keep a reproduction number below 1. Lifting restrictive closures will require the average number of contacts a person has each day to be less than pre-COVID-19, and a high rate of case detection and tracing of contacts. The thresholds found will inform public health decisions on reopening. Implications of all the available evidenceOur findings provide important information for policymakers when planning the full reopening phase. Our results confirm that prompt implementation of SAHP was crucial in reducing the spread of COVID-19. Also, based on our analyses, we propose public health alternatives to consider in view of a full reopening. For example, for different post-reopening scenarios, the average number of contacts per person needs to be reduced if the symptomatic diagnosis completion ratio is low and the probability of transmission increases. Namely, if fewer tests are completed and the usage of NPIs decreases, then the epidemic can be controlled only if individuals can maintain contact with a maximum average number of 4-5 people per person per day. Different recommendations can be provided by relaxing/strengthening one of the above-mentioned factors.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20173658

ABSTRACT

ObjectivesDuring the early stage of COVID-19 spread, many governments and regional jurisdictions put in place travel restrictions and imposed quarantine after arrivals in an effort to slow down or stop the importation of cases. At the same time, they implemented non-pharmaceutical interventions (NPI) to curtail local spread. We assess the risk of importation of COVID-19 in locations that are at that point without infection or where local chains of transmission have extinguished, and evaluate the role of quarantine in this risk. MethodsA stochastic SLIAR epidemic model is used. The effect of the rate, size, and nature of importations is studied and compared to that of NPI on the risk of importation-induced local transmission chains. The effect of quarantine on the rate of importations is assessed, as well as its efficacy as a function of its duration. ResultsThe rate of importations plays a critical role in determining the risk that case importations lead to local transmission chains, more so than local transmission characteristics, i.e., strength of NPI. The latter influences the severity of the outbreaks. Quarantine after arrival in a location is an efficacious way to reduce the rate of importations. ConclusionsLocations that see no or low level local transmission should ensure that the rate of importations remains low. A high level of compliance with post-arrival quarantine followed by testing achieves this objective with less of an impact than travel restrictions or bans.

SELECTION OF CITATIONS
SEARCH DETAIL
...