Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 52(2): 692-700, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29185762

ABSTRACT

Although they are currently unregulated, atmospheric ultrafine particles (<100 nm) pose health risks because of, e.g., their capability to penetrate deep into the respiratory system. Ultrafine particles, often minor contributors to atmospheric particulate mass, typically dominate aerosol particle number concentrations. We simulated the response of particle number concentrations over Europe to recent estimates of future emission reductions of aerosol particles and their precursors. We used the chemical transport model PMCAMx-UF, with novel updates including state-of-the-art descriptions of ammonia and dimethylamine new particle formation (NPF) pathways and the condensation of organic compounds onto particles. These processes had notable impacts on atmospheric particle number concentrations. All three emission scenarios (current legislation, optimized emissions, and maximum technically feasible reductions) resulted in substantial (10-50%) decreases in median particle number concentrations over Europe. Consistent reductions were predicted in Central Europe, while Northern Europe exhibited smaller reductions or even increased concentrations. Motivated by the improved NPF descriptions for ammonia and methylamines, we placed special focus on the potential to improve air quality by reducing agricultural emissions, which are a major source of these species. Agricultural emission controls showed promise in reducing ultrafine particle number concentrations, although the change is nonlinear with particle size.


Subject(s)
Air Pollutants , Aerosols , Amines , Ammonia , Environmental Monitoring , Europe , Particle Size , Particulate Matter
2.
Environ Sci Technol ; 48(20): 12083-9, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25260072

ABSTRACT

Atmospheric aerosol particles have a significant effect on global climate, air quality, and consequently human health. Condensation of organic vapors is a key process in the growth of nanometer-sized particles to climate relevant sizes. This growth is very sensitive to the mass accommodation coefficient α, a quantity describing the vapor uptake ability of the particles, but knowledge on α of atmospheric organics is lacking. In this work, we have determined α for four organic molecules with diverse structural properties: adipic acid, succinic acid, naphthalene, and nonane. The coefficients are studied using molecular dynamics simulations, complemented with expansion chamber measurements. Our results are consistent with α = 1 (indicating nearly perfect accommodation), regardless of the molecular structural properties, the phase state of the bulk condensed phase, or surface curvature. The results highlight the need for experimental techniques capable of resolving the internal structure of nanoparticles to better constrain the accommodation of atmospheric organics.


Subject(s)
Adipates/chemistry , Alkanes/chemistry , Naphthalenes/chemistry , Particulate Matter/chemistry , Succinic Acid/chemistry , Aerosols/chemistry , Climate , Gases/chemistry , Humans , Molecular Dynamics Simulation , Molecular Weight , Nanoparticles/chemistry , Particle Size
3.
Phys Chem Chem Phys ; 16(39): 21486-95, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25182698

ABSTRACT

The water-vapor interface of aqueous solutions of succinic acid, where pH values and bulk concentrations were varied, has been studied using surface sensitive X-ray photoelectron spectroscopy (XPS) and molecular dynamics (MD) simulations. It was found that succinic acid has a considerably higher propensity to reside in the aqueous surface region than its deprotonated form, which is effectively depleted from the surface due to the two strongly hydrated carboxylate groups. From both XPS experiments and MD simulations a strongly increased concentration of the acid form in the surface region compared to the bulk concentration was found and quantified. Detailed analysis of the surface of succinic acid solutions at different bulk concentrations led to the conclusion that succinic acid saturates the aqueous surface at high bulk concentrations. With the aid of MD simulations the thickness of the surface layer could be estimated, which enabled the quantification of surface concentration of succinic acid as a multiple of the known bulk concentration. The obtained enrichment factors were successfully used to model the surface tension of these binary aqueous solutions using two different models that account for the surface enrichment. This underlines the close correlation of increased concentration at the surface relative to the bulk and reduced surface tension of aqueous solutions of succinic acid. The results of this study shed light on the microscopic origin of surface tension, a macroscopic property. Furthermore, the impact of the results from this study on atmospheric modeling is discussed.

4.
J Phys Chem A ; 117(2): 410-20, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23253100

ABSTRACT

The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268-300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys. 2012, 12, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation coefficient can be overestimated, but in the present cases the corrected values were still close to unity with the lowest value at ≈0.99.

5.
J Chem Phys ; 136(9): 094107, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22401429

ABSTRACT

The critical cluster is the threshold size above which a cluster will be more likely to grow than to evaporate. In field and laboratory measurements of new particle formation, the number of molecules of a given species in the critical cluster is commonly taken to be the slope of the log-log plot of the formation rate versus the concentration of the species. This analysis is based on an approximate form of the first nucleation theorem, which is derived with the assumption that there are no minima in the free energy surface prior to the maximum at the critical size. However, many atmospherically relevant systems are likely to exhibit such minima, for example, ions surrounded by condensable vapour molecules or certain combinations of acids and bases. We have solved numerically the birth-death equations for both an electrically neutral one-component model system with a local minimum at pre-critical sizes and an ion-induced case. For the ion-induced case, it is verified that the log-log slope of the nucleation rate versus particle concentration plot gives accurately the difference between the cluster sizes at the free energy maximum and minimum, as is expected from the classical form of the ion-induced nucleation rate. However, the results show that applying the nucleation theorem to neutral systems with stable pre-nucleation clusters may lead to erroneous interpretations about the nature of the critical cluster.

6.
J Chem Phys ; 133(15): 154503, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20969399

ABSTRACT

Nucleation theories involving the concept of nonsharp boundary between the droplet and vapor are compared to recent molecular dynamics (MD) simulation data of Lennard-Jones vapors at temperatures above the triple point. The theories are diffuse interface theory (DIT), extended modified liquid drop-dynamical nucleation theory (EMLD-DNT), square gradient theory (SGT), and density functional theory (DFT). Particular attention is paid to thermodynamic consistency in the comparison: the applied theories either use or, with a proper parameter adjustment, result in the same values of equilibrium vapor pressure, bulk liquid density, and surface tension as the MD simulations. Realistic pressure-density correlations are also used. The best agreement between the simulated nucleation rates and calculations is obtained from DFT, SGT, and EMLD-DNT, all of which, in the studied temperature range, show deviations of less than one order of magnitude in the nucleation rate. DIT underestimates the nucleation rate by up to two orders of magnitude. DFT and SGT give the best estimate of the molecular content of the critical nuclei. Overall, at the vapor conditions of this study, all the investigated theories perform better than classical nucleation theory in predicting nucleation rates.

7.
J Chem Phys ; 133(4): 044704, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-20687673

ABSTRACT

We have determined the surface tension of small Lennard-Jones clusters using molecular dynamics and Monte Carlo simulation methods as well as density functional theory calculations. For the two simulation methods the surface tension is calculated via a rigorous thermodynamic route using simulation data as input. The capillary approximation of the classical nucleation theory, where the surface tension of a planar surface is used for cluster surface, is found to be quite reasonable even when the cluster size is as small as 100-150 atoms. For smaller cluster sizes the cluster surface tension is considerably lower than the planar value. We have also obtained an approximative value for the Tolman length by extrapolating to the planar limit the difference between the equimolar radius and the radius of the surface of tension. A negative Tolman length is suggested by all the methods used.

8.
J Chem Phys ; 131(24): 244511, 2009 Dec 28.
Article in English | MEDLINE | ID: mdl-20059083

ABSTRACT

We performed molecular dynamics simulations of a Lennard-Jones fluid, and compared the sizes of critical clusters in direct simulations of a nucleation event in vapor phase with the sizes of clusters in stable equilibrium with the surrounding vapor. By applying different cluster criteria it is shown that both the critical clusters and the equilibrium clusters have dense cores of similar size but the critical clusters have more outlying cluster atoms surrounding this core. The cluster definition introduced by ten Wolde and Frenkel [J. Chem. Phys. 109, 9901 (1998)], where each cluster atom must have at least five neighboring atoms within the distance of 1.5 times the Lennard-Jones length parameter, agrees well with the cluster size obtained from classical nucleation theory, and we find this agreement to be independent of temperature. The cluster size obtained from the observed nucleation rates by the first nucleation theorem is larger than the classical estimate and much smaller than the size given by the density profile of the equilibrium cluster.

9.
J Chem Phys ; 129(23): 234506, 2008 Dec 21.
Article in English | MEDLINE | ID: mdl-19102537

ABSTRACT

We have performed molecular dynamics simulations of Lennard-Jones argon clusters in equilibrium with a surrounding vapor and combined them with simulations of nucleation events in supersaturated vapor to investigate the dependence of critical cluster size on the vapor density in the cluster size range of 20-300 atoms. The simulations are performed at reduced temperature T(') = 0.662, which with the parameter values of Lennard-Jones argon corresponds to 80 K. We obtain bulk equilibrium values by simulating a planar liquid-vapor interface. In the studied cluster size range, we find a linear relation between critical size Delta N(*) and Delta mu(-3), where Delta mu is the chemical potential difference between supersaturated vapor and saturated vapor, but the slope of the line is not given by the Kelvin relation of classical nucleation theory. With this relation, along with the known formation energy of the small critical cluster of the nucleation simulations, we proceed to calculate the formation energies for larger critical sizes by integrating the nucleation theorem. We compare the molecular dynamics results to results from Monte Carlo simulations and both perturbative density functional theory and square gradient theory calculations. We find that the molecular dynamics results are in excellent agreement with the density functional and square gradient values. However, the Monte Carlo critical sizes and formation energies are somewhat lower than the molecular dynamics ones.

10.
J Chem Phys ; 126(22): 224517, 2007 Jun 14.
Article in English | MEDLINE | ID: mdl-17581073

ABSTRACT

Gas-liquid nucleation of 1000 Lennard-Jones atoms is simulated to evaluate temperature regulation methods and methods to obtain nucleation rate. The Berendsen and the Andersen thermostats are compared. The Berendsen thermostat is unable to control the temperature of clusters larger than the critical size. Independent of the thermostating method the velocities of individual atoms and the translational velocities of clusters up to at least six atoms are accurately described by the Maxwell velocity distribution. Simulations with the Andersen thermostat yield about two times higher nucleation rates than those with the Berendsen thermostat. Nucleation rate is extracted from the simulations by direct observation of times of nucleation onset and by the method of Yasuoka and Matsumoto [J. Chem. Phys. 109, 8451 (1998)]. Compared to the direct observation, the nucleation rates obtained from the method of Yasuoka and Matsumoto are higher by a factor of 3.

SELECTION OF CITATIONS
SEARCH DETAIL
...