Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5089, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042203

ABSTRACT

Adipose tissue macrophages (ATM) adapt to changes in their energetic microenvironment. Caloric excess, in a range from transient to diet-induced obesity, could result in the transition of ATMs from highly oxidative and protective to highly inflammatory and metabolically deleterious. Here, we demonstrate that Interferon Regulatory Factor 5 (IRF5) is a key regulator of macrophage oxidative capacity in response to caloric excess. ATMs from mice with genetic-deficiency of Irf5 are characterised by increased oxidative respiration and mitochondrial membrane potential. Transient inhibition of IRF5 activity leads to a similar respiratory phenotype as genomic deletion, and is reversible by reconstitution of IRF5 expression. We find that the highly oxidative nature of Irf5-deficient macrophages results from transcriptional de-repression of the mitochondrial matrix component Growth Hormone Inducible Transmembrane Protein (GHITM) gene. The Irf5-deficiency-associated high oxygen consumption could be alleviated by experimental suppression of Ghitm expression. ATMs and monocytes from patients with obesity or with type-2 diabetes retain the reciprocal regulatory relationship between Irf5 and Ghitm. Thus, our study provides insights into the mechanism of how the inflammatory transcription factor IRF5 controls physiological adaptation to diet-induced obesity via regulating mitochondrial architecture in macrophages.


Subject(s)
Interferon Regulatory Factors , Macrophages , Adipose Tissue/metabolism , Animals , Interferon Regulatory Factors/metabolism , Macrophages/metabolism , Mice , Monocytes/metabolism , Obesity/genetics , Obesity/metabolism
3.
Diabetes Metab ; 47(2): 101167, 2021 03.
Article in English | MEDLINE | ID: mdl-32473964

ABSTRACT

The outbreak of COVID-19 led to an unprecedented inflow of hospitalised patients with severe acute respiratory syndrome (SARS), requiring high-flow non-invasive oxygenation, if not invasive mechanical ventilation. While the best option in terms of non-invasive systems of oxygen delivery is still a matter of debate, it also remains unclear as to whether or not the optimal in-bed positioning of patients might also help to improve their oxygen saturation levels. On the basis of three representative cases, it is possible to propose the following hypotheses: (i) how patients are positioned has a strong influence on their oxygen saturation levels; (ii) saturation-optimalised positions are patient-specific; (iii) prone positions require ergonomic devices; and (iv) saturation-optimalised positions should aim to place the most affected part(s) of the lung(s) on top. Considered together, these hypotheses have led us to recommend that COVID-19 patients should undergo a specific assessment at admission to determine their saturation-optimalised in-bed position. However, further studies are still needed to assess the benefits of such a strategy on clinical outcomes.


Subject(s)
COVID-19/therapy , Lung/diagnostic imaging , Aged , COVID-19/diagnostic imaging , Female , Humans , Male , Middle Aged , Postural Balance , Prone Position , Respiration, Artificial , SARS-CoV-2 , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...