Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 279: 244-56, 2014 Aug 30.
Article in English | MEDLINE | ID: mdl-25064262

ABSTRACT

The tentative connection between the biochar surface chemical properties and their influence on microbially mediated mineralization of C, N, and S with the help of enzymes is not well established. This study was designed to investigate the effect of different biomass conversion processes (microwave pyrolysis, carbon optimized gasification, and fast pyrolysis using electricity) on the composition and surface chemistry of biochar materials produced from corn stover (Zea mays L.), switchgrass (Panicum virgatum L.), and Ponderosa pine wood residue (Pinus ponderosa Lawson and C. Lawson) and determine the effect of biochars on mineralization of C, N, and S and associated soil enzymatic activities including esterase (fluorescein diacetate hydrolase, FDA), dehydrogenase (DHA), ß-glucosidase (GLU), protease (PROT), and aryl sulfatase (ARSUL) in two different soils collected from footslope (Brookings) and crest (Maddock) positions of a landscape. Chemical properties of biochar materials produced from different batches of gasification process were fairly consistent. Biochar materials were found to be highly hydrophobic (low H/C values) with high aromaticity, irrespective of biomass feedstock and pyrolytic process. The short term incubation study showed that biochar had negative effects on microbial activity (FDA and DHA) and some enzymes including ß-glucosidase and protease.


Subject(s)
Charcoal/chemistry , Soil Microbiology , Biomass , Carbon/chemistry , Enzymes/analysis , Microscopy, Electron, Scanning , Nitrogen/chemistry , Panicum/chemistry , Pinus/chemistry , Sulfur/chemistry , Zea mays/chemistry
2.
Bioresour Technol ; 127: 92-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23131627

ABSTRACT

Switchgrass was used as a lignocellulosic feedstock for second generation ethanol production, after pretreatment using sulfuric acid-catalyzed modified clean fractionation based on NREL's (National Renewable Energy Laboratory) original procedure. Optimization of temperature, catalyst concentration and solvent composition was performed using Response Surface Methodology, and 59.03 ± 7.01% lignin recovery, 84.85 ± 1.34% glucose, and 44.11 ± 3.44% aqueous fraction xylose yields were obtained at 140.00 °C, 0.46% w/w catalyst concentration, 36.71% w/w ethyl acetate concentration, and 25.00% w/w ethanol concentration. The cellulose fraction did not inhibit the fermentation performance of Saccharomyces cerevisiae and resulted in an ethanol yield of 89.60 ± 2.1%.


Subject(s)
Biofuels , Chemical Fractionation/methods , Panicum/metabolism , Saccharomyces cerevisiae/metabolism , Catalysis , Fermentation , Glucose/analysis , Lignin/analysis , Panicum/chemistry , Temperature , Xylose/analysis
3.
Bioresour Technol ; 118: 30-6, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22695143

ABSTRACT

Lignin extracted from prairie cordgrass, switchgrass, and corn stover (using ethyl acetate-ethanol-water organosolv pretreatment) was analyzed and characterized using several methods. These methods included analysis of purity (by determination of Klason lignin, carbohydrate, and ash contents), solubility (with several organic solvents), phenolic group analysis (ultraviolet ionization difference spectra, and nitrobenzene oxidation), and general functional group analysis (by (1)H NMR). Results showed that all the examined lignin samples were relatively pure (contained over 50% Klason lignin, less than 5% carbohydrate contamination, and less than 3% ash), but switchgrass-derived lignin was observed to be the purest. All the lignins were found to contain high amounts of phenolic groups, while switchgrass-derived lignin was the most phenolic, according to the ionization difference spectra. Nitrobenzene oxidation revealed that all the lignin samples contained available guaiacyl units in high amounts.


Subject(s)
Ecosystem , Lignin/isolation & purification , Organic Chemicals/chemistry , Panicum/chemistry , Poaceae/chemistry , Solvents/chemistry , Zea mays/chemistry , Benzaldehydes/analysis , Chemical Fractionation , Hydroxylation , Nitrobenzenes/analysis , Oxidation-Reduction , Phenols/analysis , Solubility , Waste Products/analysis
4.
Biol Trace Elem Res ; 123(1-3): 191-201, 2008.
Article in English | MEDLINE | ID: mdl-18418557

ABSTRACT

Two experiments were conducted using a completely randomized design to study the effects of high levels of silicon (Si) supplementation on bone development, structure, and strength in growing rats and turkeys. Rats were supplemented at two dietary Si levels: 0 and 500 ppm; and the turkeys were supplemented at four dietary Si levels: 0, 135, 270, and 540 ppm in semi-purified diets of dextrose-albumin for rats and dextrose-casein for turkeys. The experiments lasted 8 and 4 weeks for the rats and turkeys, respectively. Physical, mechanical, and chemical parameters of bones were measured. All the physical and mechanical measures of bone size and strength were not different (P > 0.05) between treatments in rats and turkeys except the moment of inertia, which was lower (P < 0.01) in rats on the 500 ppm Si level of supplementation. There were small but consistent reductions in structural and strength parameters with Si supplementation which were not wholly due to differences in bodyweights of the rats and turkeys. Although bone mineral composition was not affected (P > 0.05) by Si supplementation, plasma magnesium (P = 0.08) in rats and plasma calcium (P < 0.05) in turkeys were reduced by high levels of Si supplementation. The antagonistic relations of high Si levels with calcium and magnesium were deemed to be the mechanisms through which high Si imposes its deleterious effects on bone size and strength.


Subject(s)
Bone Development , Diet , Silicon/administration & dosage , Animals , Male , Rats , Rats, Sprague-Dawley , Spectrophotometry, Atomic , Turkeys , Weight Gain
5.
Crit Rev Food Sci Nutr ; 45(6): 447-61, 2005.
Article in English | MEDLINE | ID: mdl-16183567

ABSTRACT

An article is presented describing the background information on the use of ozone, bacteriocins and irradiation for destroying pathogens in food products. Their effectiveness on some pathogens of importance in food processing systems and issues of concern are highlighted. It could be concluded that although each one has the potential for use as an alternative preservation technology in specific food processing applications, no single method, except irradiation, is likely to be effective against all food spoilage and food poisoning microorganisms in all food matrices. However, the synergistic effect of one of these methods and other 'hurdles' or modes of food preservations could be used to ensure the microbial safety and prevention of the development of undesirable sensory and chemical changes in some food products. Bacteriocins may contribute an additional barrier in the 'hurdle concept' of food safety.


Subject(s)
Bacteriocins , Food Handling/methods , Food Irradiation/methods , Food Microbiology , Ozone , Food Preservation/methods , Foodborne Diseases/prevention & control , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...