Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 25(6): 1449-1456, 2019 12.
Article in English | MEDLINE | ID: mdl-31210118

ABSTRACT

We report the growth of molybdenum trioxide (MoO3) nanoribbons (NRs) on epitaxial Ag and oriented Au nanostructures (NSs) using an ultra-high vacuum (UHV)-molecular beam epitaxy (MBE) technique at different substrate temperatures. An approximately 2 nm silver (Ag) film has been deposited at different growth temperatures (using UHV-MBE) on cleaned Si(100), Si(110), and Si(111) substrates. For faceted Au NSs, an approximately 50 nm Au film has been deposited (using high-vacuum thermal evaporation) on a Si(100) substrate with a native oxide layer at the interface and the sample was annealed in low vacuum (≈10-2) and at high temperature (≈975°C). Scanning electron microscopy measurements were performed to determine the morphology of MoO3/Ag and MoO3/Au composite films. From energy dispersive X-ray spectroscopy elemental mapping and line scans it is found that faceted Au NSs are more favorable for the growth of MoO3 NRs than epitaxial Ag microstructures.

2.
Sci Rep ; 8(1): 14766, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30283083

ABSTRACT

Monodispersed Fe3O4 magnetic nanoparticles (MNPs) having size of 7 nm have been prepared from iron oleate and made water dispersible by functionalization for biomedical applications. Three different reactions employing thioglycolic acid, aspartic acid and aminophosphonate were performed on oleic acid coated Fe3O4. In order to achieve a control on particle size, the pristine nanoparticles were heated in presence of ferric oleate which led to increase in size from 7 to 11 nm. Reaction parameters such as rate of heating, reaction temperature and duration of heating have been studied. Shape of particles was found to change from spherical to cuboid. The cuboid shape in turn enhances magneto-crystalline anisotropy (Ku). Heating efficacy of these nanoparticles for hyperthermia was also evaluated for different shapes and sizes. We demonstrate heat generation from these MNPs for hyperthermia application under alternating current (AC) magnetic field and optimized heating efficiency by controlling morphology of particles. We have also studied intra-cellular uptake and localization of nanoparticles and cytotoxicity under AC magnetic field in human breast carcinoma cell line.


Subject(s)
Breast Neoplasms/therapy , Ferric Compounds/therapeutic use , Hyperthermia, Induced/methods , Magnetite Nanoparticles/therapeutic use , Anisotropy , Breast Neoplasms/pathology , Female , Ferric Compounds/chemistry , Humans , Iron/chemistry , MCF-7 Cells , Magnetic Fields , Magnetite Nanoparticles/chemistry , Temperature , Water/chemistry
3.
J Ayurveda Integr Med ; 8(2): 93-98, 2017.
Article in English | MEDLINE | ID: mdl-28600164

ABSTRACT

Mercury is one of the elements which had attracted the attention of the chemists and physicians of ancient India and China. Among the various metal based drugs which utilize mercury, we became interested in the red sulfide of mercury which is known in ancient Indian literature as rasasindur (alias rasasindura, rasasindoor, rasasinduram, sindur, or sindoor) and is used extensively in various ailments and diseases. Following various physico-chemical characterizations it is concluded that rasasindur is chemically pure α-HgS with Hg:S ratio as 1:1. Analysis of rasasindur vide Transmission Electron Microscopy (TEM) showed that the particles are in nanoscale. Bio-chemical studies of rasasindur were also demonstrated. It interacts with Bovine Serum Albumin (BSA) with an association constant of (9.76 ± 0.56) × 103 M-1 and behaves as a protease inhibitor by inhibiting the proteolysis of BSA by trypsin. It also showed mild antioxidant properties.

4.
Nanoscale ; 8(7): 4299-310, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26839090

ABSTRACT

The present study aims to deduce the confinement effect on the magnetic properties of iron carbide (Fe3C) nanorods filled inside carbon nanotubes (CNTs), and to document any structural phase transitions that can be induced by compressive/tensile stress generated within the nanorod. Enhancement in the magnetic properties of the nanorods is attributed to tensile stress as well as to compression, present in the radial direction and along the nanotube axis, respectively. Finally, the growth of permanent cylindrical nanomagnets has been optimized by applying a field gradient. Besides presenting the growth model of in situ filling, we have also proposed the mechanism of magnetization of the nanotubes. Magnetization along the tube axis has been probed by confirming the pole formation. Fe3C has been selected because of its ease of formation, low TC and incompressibility.

5.
Sci Rep ; 4: 4633, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24717601

ABSTRACT

Surface enhanced Raman spectroscopy (SERS) has been established as a powerful tool to detect very low-concentration bio-molecules. One of the challenging problems is to have reliable and robust SERS substrate. Here, we report on a simple method to grow coherently embedded (endotaxial) silver nanostructures in silicon substrates, analyze their three-dimensional shape by scanning transmission electron microscopy tomography and demonstrate their use as a highly reproducible and stable substrate for SERS measurements. Bi-layers consisting of Ag and GeOx thin films were grown on native oxide covered silicon substrate using a physical vapor deposition method. Followed by annealing at 800°C under ambient conditions, this resulted in the formation of endotaxial Ag nanostructures of specific shape depending upon the substrate orientation. These structures are utilized for detection of Crystal Violet molecules of 5 × 10(-10) M concentrations. These are expected to be one of the highly robust, reusable and novel substrates for single molecule detection.

6.
Dalton Trans ; 42(14): 4885-96, 2013 Apr 14.
Article in English | MEDLINE | ID: mdl-23370409

ABSTRACT

Magnetic nanoparticles based hyperthermia therapy is a possible low cost and effective technique for killing cancer tissues in the human body. Fe3O4 and Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles are prepared by co-precipitation method and their average particle sizes are found to be ∼10 and 25 nm, respectively. The particles are spherical, non-agglomerated and highly dispersible in water. The crystallinity of as-prepared YPO4:5Eu sample is more than Fe3O4@YPO4:5Eu hybrid magnetic nanoparticles. The chemical bonds interaction between Fe3O4 and YPO4:5Eu is confirmed through FeO-P. The magnetization of hybrid nanocomposite shows magnetization Ms = 11.1 emu g(-1) with zero coercivity (measured at 2 × 10(-4) Oe) at room temperature indicating superparamagnetic behaviour. They attain hyperthermia temperature (~42 °C) under AC magnetic field showing characteristic induction heating of the prepared nanohybrid and they will be potential material for biological application. Samples produce the red emission peaks at 618 nm and 695 nm, which are in range of biological window. The quantum yield of YPO4:5Eu sample is found to be 12%. Eu(3+) present on surface and core could be distinguished from luminescence decay study. Very high specific absorption rate up to 100 W g(-1) could be achieved. The intracellular uptake of nanocomposites is found in mouse fibrosarcoma (Wehi 164) tumor cells by Prussian blue staining.


Subject(s)
Europium/chemistry , Ferrosoferric Oxide/chemistry , Magnetite Nanoparticles/chemistry , Yttrium/chemistry , Animals , Cell Line , Hyperthermia, Induced , Magnetite Nanoparticles/therapeutic use , Mice , Neoplasms/drug therapy , Particle Size , Quantum Theory
7.
Dalton Trans ; 40(43): 11571-80, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-21956380

ABSTRACT

Re-dispersible Tb(3+) doped LaPO(4) nanorods have been prepared using ethylene glycol (EG) as a capping agent as well as reaction medium at a relatively low temperature of 150 °C. The X-ray diffraction study reveals that all the doped samples are well crystalline with a monoclinic structure of the LaPO(4) phase. The luminescence intensity of (5)D(4)→(7)F(5) transition at 543 nm (green) is more prominent than that of (5)D(4)→(7)F(6) transition at 487 nm (blue) for all the samples. This is related to the polarizing effect from [PO(4)](3-) to the Tb(3+) site. Concentration dependent luminescence study shows that the luminescence intensity of Tb(3+) increases up to 10 at.% and decreases above this. This is due to the concentration quenching effect arising from cross relaxation among Tb(3+)-Tb(3+) ions. The results show that nanoparticles prepared in EG medium gives an enhanced luminescence compared to that prepared in water. This is attributed to the multiphonon relaxation effect from O-H groups surrounding over nanoparticles as well as the extent of increase of agglomeration among particles for samples prepared in water. Significant enhancement in the emission of Tb(3+) is also observed when Ce(3+) is used as the sensitizer in LaPO(4):Tb(3+)nanorods. The optimum concentration of Ce(3+) for maximum luminescence is found to be 7 at.% in Ce(3+) sensitized LaPO(4):Tb(3+) (5 at.%). Based on the energy transfer process from Ce(3+) to Tb(3+), the luminescence of Tb(3+) can be switched OFF and ON by performing oxidation and reduction of Ce(3+)↔Ce(4+) using KMnO(4) and ascorbic acid, respectively. The samples are re-dispersible in water, methanol and can be incorporated into polyvinyl alcohol (PVA) films. They show a dark green emission under ultraviolet radiation.

8.
J Phys Condens Matter ; 23(13): 135002, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-21403241

ABSTRACT

We report the growth of Ge nanostructures and microstructures on ultraclean, high vicinal angle silicon surfaces and show that self-assembled growth at optimum thickness of the overlayer leads to interesting shape transformations, namely from nanoparticle to trapezoidal structures, at higher thickness values. Thin films of Ge of varying thickness from 3 to 12 ML were grown under ultrahigh vacuum conditions on a Si(5 5 12) substrate while keeping the substrate at a temperature of 600 °C. The substrate heating was achieved by two methods: (i) by heating a filament under the substrate (radiative heating, RH) and (ii) by passing direct current through the samples in three directions (perpendicular, parallel and at 45° to the (110) direction of the substrate). We find irregular, more spherical-like island structures under RH conditions. The shape transformations have been found under DC heating conditions and for Ge deposition more than 8 ML thick. The longer sides of the trapezoid structures are found to be along (110) irrespective of the DC current direction. We also show the absence of such a shape transformation in the case of Ge deposition on Si(111) substrates. Scanning transmission electron microscopy measurements suggested the mixing of Ge and Si. This has been confirmed with a quantitative estimation of the intermixing using Rutherford backscattering spectrometry (RBS) measurements. The role of DC heating in the formation of aligned structures is discussed. Although the RBS simulations show the presence of a possible SiO(x) layer, under the experimental conditions of the present study, the oxide layer would not play a role in determining the formation of the various structures that were reported here.


Subject(s)
Germanium/chemistry , Heating/instrumentation , Nanostructures/ultrastructure , Silicon/chemistry , Hot Temperature , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Nanotechnology/instrumentation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...