Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38005330

ABSTRACT

The protective effect of biochanin A (BCA) on the histopathology, immunohistochemistry, and biochemistry of thioacetamide (TAA)-induced liver cirrhosis in vivo was investigated. There was a significant reduction in liver weight and hepatocyte propagation, with much lower cell injury in rat groups treated with BCA (25 mg/kg and 50 mg/kg) following a TAA induction. These groups had significantly lower levels of proliferating cell nuclear antigen (PCNA) and α-smooth muscle actin (α-SMA). The liver homogenates showed increased antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as decreased malondialdehyde (MDA) levels. The serum biomarkers associated with liver function, namely alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma glutamyl transaminase (GGT), returned to normal levels, comparable to those observed in both the normal control group and the reference control group. Taken together, the normal microanatomy of hepatocytes, the inhibition of PCNA and α-SMA, improved antioxidant enzymes (SOD, CAT, and GPx), and condensed MDA with repairs of liver biomarkers validated BCA's hepatoprotective effect.


Subject(s)
Antioxidants , Chemical and Drug Induced Liver Injury , Rats , Animals , Antioxidants/pharmacology , Thioacetamide/pharmacology , Proliferating Cell Nuclear Antigen , Oxidative Stress , Rats, Wistar , Liver , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Alanine Transaminase , Superoxide Dismutase/pharmacology , Chemical and Drug Induced Liver Injury/pathology , Aspartate Aminotransferases
2.
Food Chem ; 405(Pt B): 134964, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36435110

ABSTRACT

Currently, the demand for eco-friendly packaging materials to replace plastic is increasing. Edible or biodegradable packaging films prepared from natural compounds such as proteins, polysaccharides, and lipids have emerged as alternatives to non-biodegradable packaging materials. Fruit and vegetable waste has potential as a bioplastic material promoting environmental sustainability. In this regard, the use of underutilized compounds, such as by-products of fruit and vegetable processing in the production of biodegradable packaging films, is attracting more and more attention due to the availability of raw materials, cheapness, abundance, environmental friendliness, suitable physical properties, unique sensory and nutritional properties, and increased physical properties and functionality. The food industry, such as oil, juice, jam, or sugar production, contributes significantly to food waste generation. The agricultural/food processing by-products such as husks, seeds, offal, leaves, and gums from the production and processing of food contain high amounts of fibrous and plant proteins such as starch, cellulose, and pectin. As a result, food waste can be reused for recycling and high-value-added purposes, reducing environmental pollution and enabling sustainable green development. The present review discusses the use of fruit and vegetable by-products for producing biopolymers as an alternative to synthetic plastic polymers and the application of these biopolymers as value-added functional packaging films and coatings.


Subject(s)
Food Packaging , Refuse Disposal , Fruit , Vegetables , Plastics
SELECTION OF CITATIONS
SEARCH DETAIL
...