Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38202491

ABSTRACT

Plexcitonic systems based on metal nanostructures and molecular J-aggregates offer an excellent opportunity to explore the intriguing interplay between plasmonic excitations and excitons, offering unique insights into light-matter interactions at the nanoscale. Their potential applications in photocatalysis have prompted a growing interest in both their synthesis and the analysis of their properties. However, in order to construct a high-performing system, it is essential to ensure chemical and spectral compatibility between both components. We present the results of a study into a hybrid system, achieved through the coupling of gold nanobipyramids with organic molecules, and demonstrate the strengthened photochemical properties of such a system in comparison with purely J-aggregates. Our analysis includes the absorbance and photoluminescence characterization of the system, revealing the remarkable plexcitonic interaction and pronounced coupling effect. The absorbance spectroscopy of the hybrid systems enabled the investigation of the coupling strength (g). Additionally, the photoluminescence response of the J-aggregates and coupled systems reveals the impact of the coupling regime. Utilizing fluorescence lifetime imaging microscopy, we established how the photoluminescence lifetime components of the J-aggregates are affected within the plexcitonic system. Finally, to assess the photodegradation of J-aggregates and plexcitonic systems, we conducted a comparative analysis. Our findings reveal that plasmon-enhanced interactions lead to improved photostability in hybrid systems.

2.
J Phys Chem Lett ; 13(10): 2264-2272, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35239345

ABSTRACT

Plasmonic catalysis in the colloidal phase requires robust surface ligands that prevent particles from aggregation in adverse chemical environments and allow carrier flow from reagents to nanoparticles. This work describes the use of a water-soluble conjugated polymer comprising a thiophene moiety as a surface ligand for gold nanoparticles to create a hybrid system that, under the action of visible light, drives the conversion of the biorelevant NAD+ to its highly energetic reduced form NADH. A combination of advanced microscopy techniques and numerical simulations revealed that the robust metal-polymer heterojunction, rich in sulfonate functional groups, directs the interaction of electron-donor molecules with the plasmonic photocatalyst. The tight binding of polymer to the gold surface precludes the need for conventional transition-metal surface cocatalysts, which were previously shown to be essential for photocatalytic NAD+ reduction but are known to hinder the optical properties of plasmonic nanocrystals. Moreover, computational studies indicated that the coating polymer fosters a closer interaction between the sacrificial electron-donor triethanolamine and the nanoparticles, thus enhancing the reactivity.


Subject(s)
Gold , Metal Nanoparticles , Catalysis , Gold/chemistry , Light , Metal Nanoparticles/chemistry , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...