Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Otolaryngol Head Neck Surg ; 127(8): 921-5, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11493199

ABSTRACT

BACKGROUND: Earlier studies have mapped the autosomal recessive nonsyndromic deafness locus, DFNB15, to chromosomes 3q21.3-q25.2 and 19p13.3-13.1, identifying one of these chromosomal regions (or possibly both) as the site of a deafness-causing gene. Mutations in unconventional myosins cause deafness in mice and humans. One unconventional myosin, myosin 1F (MYO1F), is expressed in the cochlea and maps to chromosome 19p13.3-13.2. OBJECTIVE: To evaluate MYO1F as a candidate gene for deafness at the DFNB15 locus by determining its genomic structure and screening each exon for deafness-causing mutations to identify possible allele variants of MYO1F segregating in the DFNB15 family. METHODS: We used radiation hybrid mapping to localize MYO1F on chromosome arm 19p. We next determined its genomic structure using multiple long-range polymerase chain reaction experiments. Using these data, we completed mutation screening using single-stranded conformational polymorphism analysis and direct sequencing of affected and nonaffected persons in the original DFNB15 family. RESULTS: Radiation hybrid mapping placed MYO1F in the DFNB15 interval, establishing it as a positional candidate gene. Its genomic structure consists of 24 coding exons. No mutations or genomic rearrangements were found in the original DFNB15 family, making it unlikely that MYO1F is the disease-causing gene in this kindred. CONCLUSIONS: Although we did not find MYO1F allele variants in one family with autosomal recessive nonsyndromic hearing loss, the gene remains an excellent candidate for hereditary hearing impairment. Given its wide tissue expression, MYO1F might cause syndromic deafness.


Subject(s)
Chromosomes, Human, Pair 19 , Deafness/genetics , Myosins/genetics , Alleles , Animals , Chromosome Mapping , DNA, Complementary/genetics , Exons/genetics , Humans , Mice , Mutation , Pedigree , Polymerase Chain Reaction , Polymorphism, Single-Stranded Conformational , Radiation Hybrid Mapping , Sequence Analysis, DNA
2.
Laryngoscope ; 110(2 Pt 1): 269-75, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10680928

ABSTRACT

OBJECTIVE: Mutations in GJB2, a gene that encodes a gap junction protein, Connexin 26 (Cx26), are responsible for approximately one third of sporadic severe-to-profound or profound congenital deafness and half of severe-to-profound or profound autosomal recessive nonsyndromic hearing loss (ARNSHL). Mouse mutants homozygous for knockouts of this gene are nonviable, precluding histopathologic studies of the associated inner ear pathology in this animal model. Therefore, we studied archival temporal bone sections to identify temporal bone donors with Cx26-related deafness. STUDY DESIGN: Temporal bone donors with a history of congenital severe-to-profound or profound deafness were identified in the registry of the Temporal Bone Library at the University of Iowa. Histological findings were interpreted in a blinded fashion. DNA extracted from two celloidin-embedded mid-modiolar sections from each temporal bone was screened for the 35delG Cx26 mutation. The entire coding region of Cx26 was screened for other deafness-causing mutations if the 35delG mutation was detected. RESULTS: Of five temporal bone donors with congenital severe-to-profound deafness, one donor was found to have Cx26-related deafness. This individual was a Cx26 compound heterozygote, carrying the 35delG mutation and a noncomplementary Cx26 missense mutation on the opposing allele. Microscopic evaluation of this temporal bone showed no neural degeneration, a good population of spiral ganglion cells, near-total degeneration of hair cells in the organ of Corti, a detached and rolled-up tectorial membrane, agenesis of the stria vascularis, and a large cyst in the scala media in the region of the stria vascularis. CONCLUSION: This study is the first to report the temporal bone histopathology associated with Cx26-related deafness. Preservation of neurons in the spiral ganglion suggests that long-term successful habilitation with cochlear implants may be possible in persons with severe-to-profound or profound Cx26-related deafness.


Subject(s)
Connexins/genetics , Deafness/pathology , Hearing Loss, Sensorineural/pathology , Temporal Bone/pathology , Adult , Aged , Aged, 80 and over , Connexin 26 , DNA Mutational Analysis , Deafness/genetics , Hearing Loss, Sensorineural/genetics , Humans , Middle Aged , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...