Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(39): 25570-25577, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36199324

ABSTRACT

We describe the investigation of metal halide perovskite layers, particularly CH3NH3PbI3 used in photovoltaic applications, by soft X-ray scanning transmission X-ray microscopy (STXM). Relevant reference spectra were used to fit the experimental data using singular value decomposition. The distribution of key elements Pb, I, and O was determined throughout the layer stack of two samples prepared by wet process. One sample was chosen to undergo electrical biasing. Spectral data shows the ability of STXM to provide relevant chemical information for these samples. We found the results to be in good agreement with the sample history, both regarding the deposition sequence and the degradation of the perovskite material.

2.
Sci Rep ; 12(1): 4520, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296696

ABSTRACT

Organic-inorganic metal halide perovskites (MHPs) have recently been receiving a lot of attention due to their newfound application in optoelectronic devices, including perovskite solar cells (PSCs) which have reached power conversion efficiencies as high as 25.5%. However, the fundamental mechanisms in PSCs, including the correlation of degradation with the excellent optoelectrical properties of the perovskite absorbers, are poorly understood. In this paper, we have explored synchrotron-based soft X-ray characterization as an effective technique for the compositional analysis of MHP thin films. Most synchrotron-based studies used for investigating MHPs so far are based on hard X-rays (5-10 keV) which include various absorption edges (Pb L-edge, I L-edge, Br K-edge, etc.) but are not suited for the analysis of the organic component in these materials. In order to be sensitive to a maximum number of elements, we have employed soft X-ray-based scanning transmission X-ray microscopy (STXM) as a spectro-microscopy technique for the characterization of MHPs. We examined its sensitivity to iodine and organic components, aging, or oxidation by-products in MHPs to make sure that our suggested method is suitable for studying MHPs. Furthermore, methylammonium triiodide with different deposition ratios of PbI2 and CH3NH3I (MAI), and different thicknesses, were characterized for chemical inhomogeneity at the nanoscale by STXM. Through these measurements, we demonstrate that STXM is very sensitive to chemical composition and homogeneity in MHPs. Thus, we highlight the utility of STXM for an in-depth analysis of physical and chemical phenomena in PSCs.

3.
ACS Appl Mater Interfaces ; 10(49): 42647-42656, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30419162

ABSTRACT

Inorganic cesium lead bromide quantum dots (CsPbBr3 QDs) are usually synthesized via a high-temperature process (hot injection, HI). This process is similar to that used for the synthesis of other semiconductor QDs (i.e., CdSe@ZnS), which limits their potential cost advantage. CsPbBr3 QDs can also be synthesized at room temperature (RT) in a low cost and easily scalable process, which, thus, is one of the greatest advantages of the CsPbBr3 QDs. However, light-emitting diodes (LEDs) fabricated using RT-QDs exhibit poor performance compared to those of HI-QDs. In fact, QDs are surrounded by insulating ligands to maintain their colloidal stability but these ligands need to be removed to obtain high-performance LEDs. Here, we show that ligand removal techniques used for HI-QDs are not sufficient in the case of RT-QDs. Additional ligand engineering and annealing steps are necessary to remove the excess of ligands from RT-QD films while preventing the coalescence of the QDs. The eventual surface defects induced by annealing can be healed by a subsequent photoactivation step. Moreover, the use of solution processable inorganic charge transport layers can reduce the fabrication costs of LEDs. We fabricated an inverted LED based on a metal oxide electron transport layer and a RT-QD emitting layer which exhibited a maximum current efficiency of 17.61 cd A-1 and a maximum luminance of 22 825 cd m-2.

4.
Nanoscale ; 10(18): 8591-8599, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29696268

ABSTRACT

Perovskite quantum dots have recently emerged as a promising light source for optoelectronic applications. However, integrating them into devices while preserving their outstanding optical properties remains challenging. Due to their ionic nature, perovskite quantum dots are extremely sensitive and degrade on applying the simplest processes. To maintain their colloidal stability, they are surrounded by organic ligands; these prevent efficient charge carrier injection in devices and have to be removed. Here we report on a simple method, where a moderate thermal process followed by exposure to UV in air can efficiently remove ligands and increase the photo-luminescence of the room temperature synthesized perovskite quantum dot thin films. Annealing is accompanied by a red shift of the emission wavelength, usually attributed to the coalescence and irreversible degradation of the quantum dots. We show that it is actually related to the relaxation of the quantum dots upon the ligand removal, without the creation of non-radiative recombining defects. The quantum dot surface, as devoid of ligands, is subsequently photo-oxidized and smoothened upon exposure to UV in air, which drastically enhances their photo-luminescence. This adequate combination of treatments improves by more than an order of magnitude the performances of perovskite quantum dot light emitting diodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...