Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 20(5): e1012094, 2024 May.
Article in English | MEDLINE | ID: mdl-38723024

ABSTRACT

Cell lineage tree reconstruction methods are developed for various tasks, such as investigating the development, differentiation, and cancer progression. Single-cell sequencing technologies enable more thorough analysis with higher resolution. We present Scuphr, a distance-based cell lineage tree reconstruction method using bulk and single-cell DNA sequencing data from healthy tissues. Common challenges of single-cell DNA sequencing, such as allelic dropouts and amplification errors, are included in Scuphr. Scuphr computes the distance between cell pairs and reconstructs the lineage tree using the neighbor-joining algorithm. With its embarrassingly parallel design, Scuphr can do faster analysis than the state-of-the-art methods while obtaining better accuracy. The method's robustness is investigated using various synthetic datasets and a biological dataset of 18 cells.


Subject(s)
Algorithms , Cell Lineage , Computational Biology , Single-Cell Analysis , Single-Cell Analysis/methods , Cell Lineage/genetics , Humans , Computational Biology/methods , Sequence Analysis, DNA/methods , Software , Models, Statistical
2.
Algorithms Mol Biol ; 18(1): 10, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37525243

ABSTRACT

Bayesian phylogenetics is a computationally challenging inferential problem. Classical methods are based on random-walk Markov chain Monte Carlo (MCMC), where random proposals are made on the tree parameter and the continuous parameters simultaneously. Variational phylogenetics is a promising alternative to MCMC, in which one fits an approximating distribution to the unnormalized phylogenetic posterior. Previous work fit this variational approximation using stochastic gradient descent, which is the canonical way of fitting general variational approximations. However, phylogenetic trees are special structures, giving opportunities for efficient computation. In this paper we describe a new algorithm that directly generalizes the Felsenstein pruning algorithm (a.k.a. sum-product algorithm) to compute a composite-like likelihood by marginalizing out ancestral states and subtrees simultaneously. We show the utility of this algorithm by rapidly making point estimates for branch lengths of a multi-tree phylogenetic model. These estimates accord with a long MCMC run and with estimates obtained using a variational method, but are much faster to obtain. Thus, although generalized pruning does not lead to a variational algorithm as such, we believe that it will form a useful starting point for variational inference.

3.
PLoS Pathog ; 19(5): e1011051, 2023 05.
Article in English | MEDLINE | ID: mdl-37195999

ABSTRACT

Understanding immune mechanisms that mediate malaria protection is critical for improving vaccine development. Vaccination with radiation-attenuated Plasmodium falciparum sporozoites (PfRAS) induces high level of sterilizing immunity against malaria and serves as a valuable tool for the study of protective mechanisms. To identify vaccine-induced and protection-associated responses during malarial infection, we performed transcriptome profiling of whole blood and in-depth cellular profiling of PBMCs from volunteers who received either PfRAS or noninfectious mosquito bites, followed by controlled human malaria infection (CHMI) challenge. In-depth single-cell profiling of cell subsets that respond to CHMI in mock-vaccinated individuals showed a predominantly inflammatory transcriptome response. Whole blood transcriptome analysis revealed that gene sets associated with type I and II interferon and NK cell responses were increased in prior to CHMI while T and B cell signatures were decreased as early as one day following CHMI in protected vaccinees. In contrast, non-protected vaccinees and mock-vaccinated individuals exhibited shared transcriptome changes after CHMI characterized by decreased innate cell signatures and inflammatory responses. Additionally, immunophenotyping data showed different induction profiles of vδ2+ γδ T cells, CD56+ CD8+ T effector memory (Tem) cells, and non-classical monocytes between protected vaccinees and individuals developing blood-stage parasitemia, following treatment and resolution of infection. Our data provide key insights in understanding immune mechanistic pathways of PfRAS-induced protection and infective CHMI. We demonstrate that vaccine-induced immune response is heterogenous between protected and non-protected vaccinees and that inducted-malaria protection by PfRAS is associated with early and rapid changes in interferon, NK cell and adaptive immune responses. Trial Registration: ClinicalTrials.gov NCT01994525.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Humans , Animals , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Vaccination , Interferons , Immunity , Sporozoites
4.
Nat Commun ; 14(1): 982, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36813776

ABSTRACT

Functional characterization of the cancer clones can shed light on the evolutionary mechanisms driving cancer's proliferation and relapse mechanisms. Single-cell RNA sequencing data provide grounds for understanding the functional state of cancer as a whole; however, much research remains to identify and reconstruct clonal relationships toward characterizing the changes in functions of individual clones. We present PhylEx that integrates bulk genomics data with co-occurrences of mutations from single-cell RNA sequencing data to reconstruct high-fidelity clonal trees. We evaluate PhylEx on synthetic and well-characterized high-grade serous ovarian cancer cell line datasets. PhylEx outperforms the state-of-the-art methods both when comparing capacity for clonal tree reconstruction and for identifying clones. We analyze high-grade serous ovarian cancer and breast cancer data to show that PhylEx exploits clonal expression profiles beyond what is possible with expression-based clustering methods and clear the way for accurate inference of clonal trees and robust phylo-phenotypic analysis of cancer.


Subject(s)
Ovarian Neoplasms , Trees , Female , Humans , Trees/genetics , Transcriptome , Clonal Evolution , Neoplasm Recurrence, Local , Ovarian Neoplasms/genetics , Clone Cells , Single-Cell Analysis/methods
5.
Proc Natl Acad Sci U S A ; 120(1): e2209856120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574653

ABSTRACT

Breast cancer (BC) is a complex disease comprising multiple distinct subtypes with different genetic features and pathological characteristics. Although a large number of antineoplastic compounds have been approved for clinical use, patient-to-patient variability in drug response is frequently observed, highlighting the need for efficient treatment prediction for individualized therapy. Several patient-derived models have been established lately for the prediction of drug response. However, each of these models has its limitations that impede their clinical application. Here, we report that the whole-tumor cell culture (WTC) ex vivo model could be stably established from all breast tumors with a high success rate (98 out of 116), and it could reassemble the parental tumors with the endogenous microenvironment. We observed strong clinical associations and predictive values from the investigation of a broad range of BC therapies with WTCs derived from a patient cohort. The accuracy was further supported by the correlation between WTC-based test results and patients' clinical responses in a separate validation study, where the neoadjuvant treatment regimens of 15 BC patients were mimicked. Collectively, the WTC model allows us to accomplish personalized drug testing within 10 d, even for small-sized tumors, highlighting its potential for individualized BC therapy. Furthermore, coupled with genomic and transcriptomic analyses, WTC-based testing can also help to stratify specific patient groups for assignment into appropriate clinical trials, as well as validate potential biomarkers during drug development.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gene Expression Profiling , Biomarkers , Cell Culture Techniques , Tumor Microenvironment
6.
PLoS Comput Biol ; 16(10): e1008183, 2020 10.
Article in English | MEDLINE | ID: mdl-33035204

ABSTRACT

Identification of mutations of the genes that give cancer a selective advantage is an important step towards research and clinical objectives. As such, there has been a growing interest in developing methods for identification of driver genes and their temporal order within a single patient (intra-tumor) as well as across a cohort of patients (inter-tumor). In this paper, we develop a probabilistic model for tumor progression, in which the driver genes are clustered into several ordered driver pathways. We develop an efficient inference algorithm that exhibits favorable scalability to the number of genes and samples compared to a previously introduced ILP-based method. Adopting a probabilistic approach also allows principled approaches to model selection and uncertainty quantification. Using a large set of experiments on synthetic datasets, we demonstrate our superior performance compared to the ILP-based method. We also analyze two biological datasets of colorectal and glioblastoma cancers. We emphasize that while the ILP-based method puts many seemingly passenger genes in the driver pathways, our algorithm keeps focused on truly driver genes and outputs more accurate models for cancer progression.


Subject(s)
Genes, Neoplasm/genetics , Models, Statistical , Neoplasms/genetics , Neoplasms/pathology , Algorithms , Computational Biology , Databases, Genetic , Disease Progression , Humans , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...