Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biosens Bioelectron ; 241: 115675, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37725844

ABSTRACT

Transition-metal dichalcogenides exhibit extraordinary optical nonlinearities, making them promising candidates for advanced photonic applications. Here, we present the microbial control over second-harmonic generation (SHG) in monolayer MoS2 and the identification of single-cell bacteria. Bacteria deposited on monolayer MoS2 induce a change in the SHG signal, in the form of anisotropic polarization responses that depend on the relative orientation of the bacteria with respect to the MoS2 crystallographic direction. The anisotropic enhancement is consistent with the presence of a tensile stress along the lateral direction of bacteria axis; SHG imaging is highly effective in monitoring biomaterial strain as low as 0.1%. We also investigate the ultraviolet-induced removal of single bacteria, through the SHG imaging of MoS2. By monitoring the transient SHG signals, we determine the rupture times for bacteria, which varies noticeably for each species. This allows us to distinguish specific bacteria that share habitats; SHG imaging is useful for label free identification of pathogens at the single cell levels such as E. coli and L. casei. This label-free detection and identification of pathogens at the single-cell level can have a profound impact on the development of diagnostic tools for various applications.

2.
Sensors (Basel) ; 23(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37447646

ABSTRACT

We present a novel terahertz (THz) Fabry-Perot (FP) microcavity biosensor that uses a porous polytetrafluoroethylene (PTFE) supporting film to improve microorganism detection. The THz FP microcavity confines and enhances fields in the middle of the cavity, where the target microbial film is placed with the aid of a PTFE film having a dielectric constant close to unity in the THz range. The resonant frequency shift increased linearly with increasing amount of yeasts, without showing saturation behavior under our experimental conditions. These results agree well with finite-difference time-domain (FDTD) simulations. The sensor's sensitivity was 11.7 GHz/µm, close to the optimal condition of 12.5 GHz/µm, when yeast was placed at the cavity's center, but no frequency shift was observed when the yeast was coated on the mirror side. We derived an explicit relation for the frequency shift as a function of the index, amount, and location of the substances that is consistent with the electric field distribution across the cavity. We also produced THz transmission images of yeast-coated PTFE, mapping the frequency shift of the FP resonance and revealing the spatial distribution of yeast.


Subject(s)
Motion Pictures , Saccharomyces cerevisiae , Porosity , Electricity , Polytetrafluoroethylene
3.
Nanomaterials (Basel) ; 13(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37110914

ABSTRACT

We demonstrated a narrow-linewidth high-power Yb-doped polarization-maintaining (PM) fiber laser with near-diffraction-limited beam. The laser system consisted of a phase-modulated single-frequency seed source and four-stage amplifiers in the master oscillator power amplifier configuration. A quasi-flat-top pseudo random binary sequence (PRBS) phase-modulated single-frequency laser with a linewidth of 8 GHz was injected into the amplifiers for suppressing stimulated Brillouin scattering. The quasi-flat-top PRBS signal was readily generated from the conventional PRBS signal. The maximum output power was 2.01 kW with polarization extinction ratio (PER) of ~15 dB. The beam quality (M2) was less than 1.3 over the power scaling range.

4.
Biomater Res ; 27(1): 37, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37106432

ABSTRACT

BACKGROUND: Regeneration of defective neurons in central nervous system is a highlighted issue for neurodegenerative disease treatment. Various tissue engineering approaches have focused on neuritogenesis to achieve the regeneration of damaged neuronal cells because damaged neurons often fail to achieve spontaneous restoration of neonatal neurites. Meanwhile, owing to the demand for a better diagnosis, studies of super-resolution imaging techniques in fluorescence microscopy have triggered the technological development to surpass the classical resolution dictated by the optical diffraction limit for precise observations of neuronal behaviors. Herein, the multifunctional nanodiamonds (NDs) as neuritogenesis promoters and super-resolution imaging probes were studied. METHODS: To investigate the neuritogenesis-inducing capability of NDs, ND-containing growing medium and differentiation medium were added to the HT-22 hippocampal neuronal cells and incubated for 10 d. In vitro and ex vivo images were visualized through custom-built two-photon microscopy using NDs as imaging probes and the direct stochastic optical reconstruction microscopy (dSTORM) process was performed for the super-resolution reconstruction owing to the photoblinking properties of NDs. Moreover, ex vivo imaging of the mouse brain was performed 24 h after the intravenous injection of NDs. RESULTS: NDs were endocytosed by the cells and promoted spontaneous neuritogenesis without any differentiation factors, where NDs exhibited no significant toxicity with their outstanding biocompatibility. The images of ND-endocytosed cells were reconstructed into super-resolution images through dSTORM, thereby addressing the problem of image distortion due to nano-sized particles, including size expansion and the challenge in distinguishing the nearby located particles. Furthermore, the ex vivo images of NDs in mouse brain confirmed that NDs could penetrate the blood-brain barrier (BBB) and retain their photoblinking property for dSTORM application. CONCLUSIONS: It was demonstrated that the NDs are capable of dSTORM super-resolution imaging, neuritogenic facilitation, and BBB penetration, suggesting their remarkable potential in biological applications.

5.
Biomed Opt Express ; 13(2): 525-538, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35284185

ABSTRACT

In this study, an active mode-locked tunable pulsed laser (AML-TPL) is proposed to excite picosecond pulsed light with a rapid wavelength tunability of approximately 800 nm for multiphoton microscopy. The AML-TPL is schematically based on a fiber-cavity semiconductor optical amplifier (SOA) configuration to implement a robust and align-free pulsed light source with a duration of 1.6 ps, a repetition rate of 27.9271 MHz, and average output power of over 600 mW. A custom-built multiphoton imaging system was also built to demonstrate the imaging performance of the proposed AML-TPL by comparing with the commercial Ti:Sapphire femtosecond laser. Two-photon excited fluorescence images were successfully acquired using a human breast cancer cell line (MDA-MB-231) stained with acridine orange.

6.
Int J Biol Macromol ; 155: 961-971, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-31712157

ABSTRACT

Multifunctional theranostic agents have recently attracted a great deal of attention in field of biomedicine. In the present work, folic acid-conjugated chitosan-functionalized graphene oxide (FA-CS-GO) has been developed as a new type of multifunctional nanomaterial for near-infrared fluorescence (FL)/photoacoustic imaging-(PAI) guided photothermal therapy (PTT) of cancer. In vitro results showed that the FA-CS-GO was able to completely destroy cancer cells under laser irradiation. More importantly, in vivo experiments showed that in the presence of targeted FA-CS-GO with laser irradiation, the tumors were completely inhibited, with no recurrence within 20 days. A high photoacoustic signal was detected in the tumor area of mice 24 h after the injection of FA-CS-GO, demonstrating the ability of FA-CS-GO to function as a new PAI contrast agent. Altogether, FA-CS-GO showed a high tumor-targeting efficiency, powerful photothermal effect, and outstanding PAI. This study is considered the first where multifunctional nanomaterials were used for highly efficient FL/PAI-guided tumor-targeted PTT, which is a promising avenue for theranostic nanomedicine.


Subject(s)
Nanostructures/chemistry , Neoplasms/therapy , Photoacoustic Techniques , Photothermal Therapy , Theranostic Nanomedicine , Animals , Cell Line, Tumor , Chitosan/chemistry , Female , Folic Acid/chemistry , Graphite/chemistry , Humans , Mice, Inbred BALB C , Mice, Nude
7.
J Control Release ; 311-312: 26-42, 2019 10.
Article in English | MEDLINE | ID: mdl-31401198

ABSTRACT

Developing a novel multifunctional theranostic agent for cancer combination therapy has attracted tremendous attention in recent years. In this report, we designed and developed a new multifunctional nanocarrier based on anti-epidermal growth factor receptor antibody-conjugated and paclitaxel loaded-thiol chitosan-layered gold nanoshells (anti-EGFR-PTX-TCS-GNSs) as a theranostic agent for the first time used for fluorescence/photoacoustic dual-modal imaging-guided chemophotothermal synergistic therapy. The resulting anti-EGFR-PTX-TCS-GNSs showed excellent biosafety, biocompatibility, broad near-infrared (NIR) absorbance, photostability, fast and laser irradiation-controllable drug release, and higher targeting efficiency for efficient chemophotothermal combination therapy of cancer under the guidance of photoacoustic imaging (PAI). The combination therapy was investigated in vitro and in vivo, displaying a powerful anticancer efficiency. More importantly, an in vivo experiment of anti-EGFR-PTX-TCS-GNSs with laser irradiation showed heavy damage to the tumor tissue, killing the tumor cells almost completely. Anti-EGFR-PTX-TCS-GNSs also showed a powerful capacity to visualize tumors, and therefore it is considered a new PAI contrast agent for subsequent therapy. Histological analysis and TUNEL assay further showed much more apoptotic cells, confirming the value of anti-EGFR-PTX-TCS-GNSs. Our results provide a new concept and a promising strategy to develop a novel multifunctional nanotheranostic agent for future clinical applications in diagnosis and therapy.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antineoplastic Agents, Phytogenic/administration & dosage , Chitosan/administration & dosage , ErbB Receptors/antagonists & inhibitors , Gold/administration & dosage , Nanoshells/administration & dosage , Paclitaxel/administration & dosage , Animals , Antibodies, Monoclonal/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Chitosan/chemistry , Combined Modality Therapy , Diagnostic Imaging , Drug Liberation , ErbB Receptors/immunology , Erythrocytes/drug effects , Female , Gold/chemistry , Humans , Mice, Inbred BALB C , Mice, Nude , Nanoshells/chemistry , Neoplasms/diagnosis , Neoplasms/therapy , Paclitaxel/chemistry , Photoacoustic Techniques , Sulfhydryl Compounds/administration & dosage , Sulfhydryl Compounds/chemistry , Theranostic Nanomedicine
8.
J Biomed Opt ; 24(7): 1-9, 2019 07.
Article in English | MEDLINE | ID: mdl-31290292

ABSTRACT

A multi-spectral laser speckle contrast imaging (MS-LSCI) system is proposed using only a single wavelength-swept laser, which provides both highly coherent and multi-spectral outputs to simultaneously generate laser speckle contrast images and multi-spectral images, respectively. Using a laser light swept from 770 to 821 nm at a repetition rate of 5 Hz and a CCD camera of 335 fps, 67 multi-spectral frame images are acquired in 0.76 nm wavebands over 51 nm spectral range. The spectral sub-windowing method of single wavelength-swept laser source is used to solve the lack of spectral information from a few individual light sources, which is a limitation of conventional MS-LSCI systems. In addition to the speckle flow index from the LSCI frames, the multi-spectrally encoded images can generate additional images of spectral absorbance. To further examine the performance of the MS-LSCI system, an in vivo cuff-induced ischemia experiment was conducted to show the real-time imaging of hemodynamic and blood oxygen saturation changes simultaneously over the entire 2.5 cm × 4.5 cm field of view.


Subject(s)
Image Processing, Computer-Assisted/methods , Lasers , Optical Imaging/methods , Feasibility Studies , Fingers/blood supply , Fingers/diagnostic imaging , Hemodynamics/physiology , Humans , Ischemia/blood , Ischemia/diagnostic imaging , Optical Imaging/instrumentation , Oxygen/blood , Oxyhemoglobins/analysis , Phantoms, Imaging
9.
Biomed Opt Express ; 9(2): 705-716, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29552406

ABSTRACT

Owing to its near infrared (NIR) absorption, graphene oxide (GO) is promising for both photothermal (PT) therapy and multiphoton (MP) imaging. Novel therapy/imaging modality switching is proposed here based on the selected excitation wavelength of femtosecond (FS) laser. GO-based destruction of cancer cells is demonstrated when the laser power of 800-nm-wavelength FS laser is increased above 7 mW. However, GO-based imaging is mainly monitored without damaging the sample when using 1200-nm wavelength FS laser in the same laser power range. Folic acid (FA) conjugated graphene oxide (FA-GO) was synthesized for selective cancer cell targeting. Dual-function FA-GO-based cancer cell targeting agents were experimentally optimized to enable therapy/imaging modality switching.

10.
Cell Oncol (Dordr) ; 40(6): 549-561, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28776259

ABSTRACT

BACKGROUND: Previously, it has been found that the cancer upregulated gene 2 (CUG2) and the epidermal growth factor receptor (EGFR) both contribute to drug resistance of cancer cells. Here, we explored whether CUG2 may exert its anticancer drug resistance by increasing the expression of EGFR. METHODS: EGFR expression was assessed using Western blotting, immunofluorescence and capacitance assays in A549 lung cancer and immortalized bronchial BEAS-2B cells, respectively, stably transfected with a CUG2 expression vector (A549-CUG2; BEAS-CUG2) or an empty control vector (A549-Vec; BEAS-Vec). After siRNA-mediated EGFR, Stat1 and HDAC4 silencing, antioxidant and multidrug resistance protein and mRNA levels were assessed using Western blotting and RT-PCR. In addition, the respective cells were treated with doxorubicin after which apoptosis and reactive oxygen species (ROS) levels were measured. Stat1 acetylation was assessed by immunoprecipitation. RESULTS: We found that exogenous CUG2 overexpression induced EGFR upregulation in A549 and BEAS-2B cells, whereas EGFR silencing sensitized these cells to doxorubicin-induced apoptosis. In addition, we found that exogenous CUG2 overexpression reduced the formation of ROS during doxorubicin treatment by enhancing the expression of antioxidant and multidrug resistant proteins such as MnSOD, Foxo1, Foxo4, MRP2 and BCRP, whereas EGFR silencing congruently increased the levels of ROS by decreasing the expression of these proteins. We also found that EGFR silencing and its concomitant Akt, ERK, JNK and p38 MAPK inhibition resulted in a decreased Stat1 phosphorylation and, thus, a decreased activation. Since also acetylation can affect Stat1 activation via a phospho-acetyl switch, HDAC inhibition may sensitize cells to doxorubicin-induced apoptosis. Interestingly, we found that exogenous CUG2 overexpression upregulated HDAC4, but not HDAC2 or HDAC3. Conversely, we found that HDAC4 silencing sensitized the cells to doxorubicin resistance by decreasing Stat1 phosphorylation and EGFR expression, thus indicating an interplay between HDAC4, Stat1 and EGFR. CONCLUSION: Taken together, we conclude that CUG2-induced EGFR upregulation confers doxorubicin resistance to lung (cancer) cells through Stat1-HDAC4 signaling.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Doxorubicin/pharmacology , ErbB Receptors/metabolism , Histone Deacetylases/metabolism , Repressor Proteins/metabolism , STAT1 Transcription Factor/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/genetics , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylases/genetics , Humans , Phosphorylation/drug effects , Phosphorylation/genetics , Repressor Proteins/genetics , STAT1 Transcription Factor/genetics , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
11.
Biomater Res ; 20: 2, 2016.
Article in English | MEDLINE | ID: mdl-26783450

ABSTRACT

BACKGROUND: Hydrogels can serve as three-dimensional (3D) scaffolds for cell culture and be readily injected into the body. Recent advances in the image technology for 3D scaffolds like hydrogels have attracted considerable attention to overcome the drawbacks of ordinary imaging technologies such as optical and fluorescence microscopy. Multiphoton microscopy (MPM) is an effective method based on the excitation of two-photons. In the present study, C2C12 myoblasts differentiated in 3D gelatin hydroxyphenylpropionic acid (GHPA) hydrogels were imaged by using a custom-built multiphoton excitation fluorescence microscopy to compare the difference in the imaging capacity between conventional microscopy and MPM. RESULTS: The physicochemical properties of GHPA hydrogels were characterized by using scanning electron microscopy and Fourier-transform infrared spectroscopy. In addition, the cell viability and proliferation of C2C12 myoblasts cultured in the GHPA hydrogels were analyzed by using Live/Dead Cell and CCK-8 assays, respectively. It was found that C2C12 cells were well grown and normally proliferated in the hydrogels. Furthermore, the hydrogels were shown to be suitable to facilitate the myogenic differentiation of C2C12 cells incubated in differentiation media, which had been corroborated by MPM. It was very hard to get clear images from a fluorescence microscope. CONCLUSIONS: Our findings suggest that the gelatin-based hydrogels can be beneficially utilized as 3D scaffolds for skeletal muscle engineering and that MPM can be effectively applied to imaging technology for tissue regeneration.

12.
Biochem Biophys Res Commun ; 459(2): 313-318, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25727013

ABSTRACT

Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling.


Subject(s)
H-1 parvovirus , Lectins/metabolism , Oncolytic Virotherapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/therapy , Receptor, Interferon alpha-beta/metabolism , Apoptosis , Cell Line, Tumor , Gene Expression , Humans , Intercellular Signaling Peptides and Proteins , Lectins/antagonists & inhibitors , Lectins/genetics , Pancreatic Neoplasms/genetics , Parvoviridae Infections/genetics , Parvoviridae Infections/metabolism , Parvoviridae Infections/pathology , RNA, Small Interfering/genetics , Receptor, Interferon alpha-beta/genetics , STAT1 Transcription Factor/antagonists & inhibitors , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction , TYK2 Kinase/antagonists & inhibitors , TYK2 Kinase/genetics , TYK2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...