Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 32(26)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33825697

ABSTRACT

Conventional sensors are rigid, involve complex processes and structures, and one sensor can detect only one type of stimulus. The manufacturing costs of such devices are high owing to the use of vacuum processes for the formation of thin films and electrodes and the complicated fabrication processes required to construct multiple layers. In addition, the multiple-layer design increases the risk of peeling due to mechanical movement. In this study, to solve the aforementioned problems, a simple two-layer multi-sensor has been fabricated using a non-vacuum solution process. The sensor consists of a light absorption layer comprising polyvinyl butyral and semiconductor particles and a top layer comprising two spiral-shaped Ag nanowire electrodes. The sensor experiences minimal damage by external adhesives and has a light-sensitive optical response at 420 nm and at 1.2 mW cm-2. Herein, the capacitance of the sensor applied to the two-electrode structure was determined, along with the light sensitivity and change in noise with frequency. We believe that the proposed multi-sensor can be applied in a wide range of fields because it can act as a touch sensor and light sensor.

2.
ACS Appl Mater Interfaces ; 11(4): 4416-4424, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30644712

ABSTRACT

Most photodetectors developed to date essentially measure photocurrents induced by the generation and separation of electron-hole pairs in semiconductors during irradiation. Although the above light detection method is well established, highly sensitive, and applicable to a broad range of semiconductor materials, it requires the presence of a stable and direct contact between the semiconductor and the electrode for accurate photocurrent measurements. In turn, this prerequisite necessitates the use of various costly processes for device fabrication (e.g., photolithography and vacuum deposition of semiconductors/metals) and complicates the development of flexible devices. Herein, inspired by the fact that the dielectric properties of certain materials can be changed by light irradiation, we dispersed ZnS/Cu semiconducting particles in poly(vinyl butyral) to prepare a free-standing composite film and formed two layers of Ag nanowire electrodes on both sides of the cured composite to fabricate a photodetector of a completely new type. The developed device exhibited a capacitance very sensitive to irradiation with light of a specific wavelength and additionally featured the advantages of simple structure/operation mechanism, mechanical flexibility, and transparency, not showing any signs of performance deterioration even after severe damage.

3.
ACS Appl Mater Interfaces ; 9(8): 7505-7514, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28145112

ABSTRACT

One of the most important aspects that we need to consider in the design of intrinsically stretchable electrodes is that most electronic devices that can be formed on them are not stretchable themselves. This discrepancy can induce severe stress singularities at the interfaces between stiff devices and stretchable electrodes, leading to catastrophic device delamination when the substrate is stretched. Here, we suggest a novel solution to this challenge which involves introducing a photolithography-based rigid-island approach to fabricate the heterogeneous configuration of a silver nanowire (AgNW)/polymer composite structure. For this, we designed two new transparent polymers: a photopatternable polymer that is rigid yet flexible, and a stretchable polymer, both of which have identical acrylate functional groups. Patterning of the rigid polymer and subsequent overcoating of the soft polymer formed rigid island disks embedded in the soft polymer, resulting in a selectively stretchable transparent film. Strong covalent bonds instead of weak physical interactions between the polymers strengthened the cohesive force at the interface of the rigid/soft polymers. Inverted-layer processing with a percolated AgNW network was used to form a heterogeneous AgNW/polymer composite structure that can be used as a selectively stretchable transparent electrode. An optimized structural configuration prevented the resistance of the rigid electrode from varying up to a lateral strain of 70%. A repeated stretch/release test with 60% strain for 5000 cycles did not cause any severe damage to the structure, revealing that the fabricated structure was mechanically stable and reliable.

4.
ACS Appl Mater Interfaces ; 8(36): 23820-6, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27552134

ABSTRACT

An electro-thermal annealing (ETA) method, which uses an electrical pulse of less than 100 ns, was developed to improve the electrical performance of array-level amorphous-oxide-semiconductor (AOS) thin-film transistors (TFTs). The practicality of the ETA method was experimentally demonstrated with transparent amorphous In-Ga-Zn-O (a-IGZO) TFTs. The overall electrical performance metrics were boosted by the proposed method: up to 205% for the trans-conductance (gm), 158% for the linear current (Ilinear), and 206% for the subthreshold swing (SS). The performance enhancement were interpreted by X-ray photoelectron microscopy (XPS), showing a reduction of oxygen vacancies in a-IGZO after the ETA. Furthermore, by virtue of the extremely short operation time (80 ns) of ETA, which neither provokes a delay of the mandatory TFTs operation such as addressing operation for the display refresh nor demands extra physical treatment, the semipermanent use of displays can be realized.

SELECTION OF CITATIONS
SEARCH DETAIL
...