Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Invest ; 94(11): 1296-308, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25243900

ABSTRACT

Sustained angiogenesis is essential for tumor growth as it provides the tumor with a network of blood vessels that supply both oxygen and essential nutrients. Limiting tumor-associated angiogenesis is a proven strategy for the treatment of human cancer. To date, the rapid detection and quantitation of tumor-associated endothelial cell (TAEC) proliferation has been challenging, largely due to the low frequency of endothelial cells (ECs) within the tumor microenvironment. In this report, we address this problem using a new multiparametric flow cytometry method capable of rapid and precise quantitation of proliferation by measuring bromodeoxyuridine (BrdUrd) uptake in mouse TAECs from established human tumor xenografts. We determined the basal proliferation labeling index of TAECs in two human tumor xenografts representing two distinct histologies, COLO 205 (colorectal cancer) and U-87 (glioblastoma). We then investigated the effects of two large-molecule antiangiogenic agents targeting different biochemical pathways. Blocking angiopoietin-Tie2 signaling with the peptide-Fc fusion protein, trebananib (AMG 386), inhibited proliferation of TAECs, whereas blocking Dll4-Notch signaling with an anti-Dll4-specific antibody induced hyperproliferation of TAECs. These pharmacodynamic studies highlight the sensitivity and utility of this flow cytometry-based method and demonstrate the value of this assay to rapidly assess the in vivo proliferative effects of angiogenesis-targeted agents on both the tumor and the associated vasculature.


Subject(s)
Antibodies, Neutralizing/pharmacology , Endothelial Cells/drug effects , Flow Cytometry/methods , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Membrane Proteins/antagonists & inhibitors , Receptor, TIE-2/antagonists & inhibitors , Recombinant Fusion Proteins/pharmacology , Animals , Antibodies, Neutralizing/therapeutic use , Bromodeoxyuridine , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Female , Glioblastoma/pathology , Humans , Mice, Nude , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Recombinant Fusion Proteins/therapeutic use , Xenograft Model Antitumor Assays
2.
Proc Natl Acad Sci U S A ; 100(16): 9434-9, 2003 Aug 05.
Article in English | MEDLINE | ID: mdl-12881485

ABSTRACT

Previous studies have demonstrated that the specificity of Src homology 2 (SH2) and phosphotyrosine-binding domain interactions are mediated by phosphorylated tyrosines and their neighboring amino acids. Two of the first phosphotyrosine-based binding sites were found on middle T antigen of polyoma virus. Tyr-250 acts as a binding site for ShcA, whereas Tyr-315 forms a binding site for the SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase. However, genetic analysis of a given phosphotyrosine's role in signaling can be complicated when it serves as a binding site for multiple proteins. The situation is particularly difficult when the phosphotyrosine serves as a secondary binding site for a protein with primary binding determinates elsewhere. Mutation of a tyrosine residue to phenylalanine blocks association of all bound proteins. Here we show that the mutation of the amino acids following the phosphorylated tyrosine to alanine can reveal phosphotyrosine function as a secondary binding site, while abrogating the phosphotyrosine motif's role as a primary binding site for SH2 domains. We tested this methodology by using middle T antigen. Our results suggest that Tyr-250 is a secondary binding site for phosphatidylinositol 3-kinase, whereas Tyr-315 is a secondary binding site for a yet-to-be-identified protein, which is critical for transformation.


Subject(s)
Mutation , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/genetics , Alanine/chemistry , Alleles , Amino Acid Sequence , Animals , Binding Sites , Immunoblotting , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Phenylalanine/chemistry , Plasmids/metabolism , Precipitin Tests , Protein Binding , Retroviridae/genetics , Tyrosine/chemistry , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...