Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Extracell Vesicles ; 10(10): e12133, 2021 08.
Article in English | MEDLINE | ID: mdl-34401049

ABSTRACT

Extracellular vesicles (EVs) are nano-sized vesicles composed of proteolipid bilayers carrying various molecular signatures of the cells. As mediators of intercellular communications, EVs have gained great attention as new therapeutic agents in the field of nanomedicine. Therefore, many studies have explored the roles of cell-derived EVs isolated from cultured hepatocytes or stem cells as inducer of liver proliferation and regeneration under various pathological circumstances. However, study investigating the role of EVs directly isolated from liver tissue has not been performed. Herein, to understand the pathophysiological role and to investigate the therapeutic potential of in vivo liver EVs, we isolated EVs from both normal and carbon tetrachloride (CCl4)-induced damaged in vivo liver tissues. The in vivo EVs purified from liver tissues display typical features of EVs including spherical morphology, nano-size, and enrichment of tetraspanins. Interestingly, administration of both normal and damaged liver EVs significantly accelerated the recovery of liver tissue from CCl4-induced hepatic necrosis. This restorative action was through the induction of hepatocyte growth factor at the site of the injury. These results suggest that not only normal liver EVs but also damaged liver EVs play important pathophysiological roles of maintaining homeostasis after tissue damage. Our study, therefore, provides new insight into potentially developing in vivo EV-based therapeutics for preventing and treating liver diseases.


Subject(s)
Extracellular Vesicles/physiology , Hepatocytes/metabolism , Liver Diseases/metabolism , Liver Diseases/therapy , Liver/metabolism , Necrosis/drug therapy , Animals , Apoptosis/drug effects , Carbon Tetrachloride/adverse effects , Cell Proliferation , Disease Models, Animal , Homeostasis , Liver/drug effects , Male , Mice, Inbred C57BL , Microscopy, Electron/methods , Therapeutics/methods
2.
J Extracell Vesicles ; 9(1): 1766821, 2020.
Article in English | MEDLINE | ID: mdl-32595916

ABSTRACT

Indoor pollutants are important problems to public health. Among indoor pollutants, indoor dust contains extracellular vesicles (EVs), which are associated with pulmonary inflammation. However, it has not been reported whether indoor dust EVs affect the cancer lung metastasis. In this study, we isolated indoor dust EVs and investigated their roles in cancer lung metastasis. Upon intranasal administration, indoor dust EVs enhanced mouse melanoma lung metastasis in a dose-dependent manner in mice. Pre-treatment or co-treatment of indoor dust EVs significantly promoted melanoma lung metastasis, whereas post-treatment of the EVs did not. In addition, the lung lysates from indoor dust EV-treated mice significantly increased tumour cell migration in vitro. We observed that tumour necrosis factor-α played important roles in indoor dust EV-mediated promotion of tumour cell migration in vitro and cancer lung metastasis in vivo. Furthermore, Pseudomonas EVs, the main components of indoor dust EVs, and indoor dust EVs showed comparable effects in promoting tumour cell migration in vitro and cancer lung metastasis in vivo. Taken together, our results suggest that indoor dust EVs, at least partly contributed by Pseudomonas EVs, are potential promoting agents of cancer lung metastasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...