Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 152: 106417, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38281440

ABSTRACT

Postoperative abdominal adhesions often occur after abdominal surgery; barrier membranes which mimic peritoneal tissue can be constructed to prevent abdominal adhesions. To this end, silk fibroin (SF) sheets were coated with polyvinyl alcohol (PVA) and agarose (AGA) at PVA:AGA ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 to create a composite anti-adhesive barrier and allow us to identify a suitable coating ratio. The membranes were characterized in terms of their molecular organization, structure, and morphology using Fourier transform Infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM), respectively. The physical and mechanical properties of the membranes and their biological performance (i.e., fibroblast proliferation and invasion) were tested in vitro. Each membrane showed both smooth and rough surface characteristics. Membranes coated with PVA:AGA at ratios of 100:0, 70:30, 50:50, and 30:70 exhibited more -OH and amide III moieties than those coated with 0:100 PVA:AGA, which consequently affected structural organization, degradation, and fibroblast viability. The 0:100 PVA:AGA-coated degraded the fastest. Barrier membranes coated with 100:0 and 70:30 PVA: AGA demonstrated reduced fibroblast proliferation and attachment. The membrane coated with 70:30 PVA:AGA exhibited a stable appearance, and did not curl under wet conditions. Therefore, SF sheets coated with 70:30 PVA:AGA show promise as anti-adhesive barrier membranes for further development.


Subject(s)
Amides , Fibroins , Spectroscopy, Fourier Transform Infrared , Membranes , Fibroblasts , Polyvinyl Alcohol , Sepharose
2.
Front Plant Sci ; 13: 966363, 2022.
Article in English | MEDLINE | ID: mdl-36311114

ABSTRACT

Bio-based and biodegradable plastic mulching films have been proposed to replace the non-biodegradable plastic mulch films to solve plastic pollution problems in agricultural soils. However, the impact of bio-based and biodegradable plastics on plant and human health remains largely unexplored. Here, we aimed to assess the risk under field conditions of a bio-based and biodegradable poly(butylene succinate-co-adipate; PBSA), a widely used mulching film as carrier of potential pathogenic microorganisms (bacteria and fungi) at ambient and future climate conditions. Overall, we affiliated 64 fungal and 11 bacterial operational taxonomic units (OTUs) as pathogens by using Next-Generation Sequencing approach. Our results revealed that PBSA hosted at least 53 plant pathogens, of which 51 were classified as fungi, while the other two were bacteria. Most fungal plant pathogens were able to withstand the anticipated future climate changes. We detected 13 fungal and eight bacterial OTUs, which were classified as opportunistic human pathogens. Only one bacterial OTU (Enterococcus faecium) was assigned to a human pathogen. While future climate conditions only significantly impacted on the presence and frequency of detection of few pathogens, incubation time was found to significantly impacted on nine pathogens. This result demonstrates the temporal dynamics of pathogens associated with PBSA. The threats to plant and human health were discussed. We emphasize that the risks to human health are relatively low because we mainly found opportunistic pathogens associated with PBSA and the amount are comparable to the plant debris. However, the risks to plant health may be considered as moderate because many plant pathogens were discovered and/or enriched in PBSA. Furthermore, in soil environments, the pathogenic risk of plastic is highly depending on the surrounding soil pathobiome where plastic is being decomposed.

3.
J Funct Biomater ; 13(2)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35735935

ABSTRACT

Osteoconductive silk fibroin (SF) binders were fabricated for the bone repair of an alveolar cleft defect. Binders were prefigureared by mixing different ratios of a mixture of random coils and SF aggregation with SF fibrils: 100:0 (SFB100), 75:25 (SFB75), 50:50 (SFB50), 25:75 (SFB25), and 0:100 (SFB0). The gelation, molecular organization, structures, topography, and morphology of the binders were characterized and observed. Their physical, mechanical, and biological properties were tested. The SF binders showed gelation via self-assembly of SF aggregation and fibrillation. SFB75, SFB50, and SFB25 had molecular formation via the amide groups and showed more structural stability than SFB100. The morphology of SFB0 demonstrated the largest pore size. SFB0 showed a lowest hydrophilicity. SFB100 showed the highest SF release. SFB25 had the highest maximum load. SFB50 exhibited the lowest elongation at break. Binders with SF fibrils showed more cell viability and higher cell proliferation, ALP activity, calcium deposition, and protein synthesis than without SF fibrils. Finally, the results were deduced: SFB25 demonstrated suitable performance that is promising for the bone repair of an alveolar cleft defect.

4.
Int J Mol Sci ; 21(11)2020 May 29.
Article in English | MEDLINE | ID: mdl-32485972

ABSTRACT

Numerous eye diseases are linked to biomechanical dysfunction of the retina. However, the underlying forces are almost impossible to quantify experimentally. Here, we show how biomechanical properties of adult neuronal tissues such as porcine retinae can be investigated under tension in a home-built tissue stretcher composed of nanostructured TiO2 scaffolds coupled to a self-designed force sensor. The employed TiO2 nanotube scaffolds allow for organotypic long-term preservation of adult tissues ex vivo and support strong tissue adhesion without the application of glues, a prerequisite for tissue investigations under tension. In combination with finite element calculations we found that the deformation behavior is highly dependent on the displacement rate which results in Young's moduli of (760-1270) Pa. Image analysis revealed that the elastic regime is characterized by a reversible shear deformation of retinal layers. For larger deformations, tissue destruction and sliding of retinal layers occurred with an equilibration between slip and stick at the interface of ruptured layers, resulting in a constant force during stretching. Since our study demonstrates how porcine eyes collected from slaughterhouses can be employed for ex vivo experiments, our study also offers new perspectives to investigate tissue biomechanics without excessive animal experiments.


Subject(s)
Retina/physiology , Retina/physiopathology , Tissue Scaffolds/chemistry , Animals , Biomechanical Phenomena , Calibration , Elastic Modulus , Elasticity , Finite Element Analysis , Microscopy, Fluorescence , Nanotechnology , Stress, Mechanical , Swine , Tissue Adhesions , Titanium/chemistry
5.
Microb Ecol ; 69(4): 905-13, 2015 May.
Article in English | MEDLINE | ID: mdl-25749938

ABSTRACT

Forest management practices (FMPs) significantly influence important ecological processes and services in Central European forests, such as leaf litter decomposition and nutrient cycling. Changes in leaf litter diversity, and thus, its quality as well as microbial community structure and function induced by different FMPs were hypothesized to be the main drivers causing shifts in decomposition rates and nutrient release in managed forests. In a litterbag experiment lasting 473 days, we aimed to investigate the effects of FMPs (even-aged timber management, selective logging and unmanaged) on bacterial and fungal communities involved in leaf litter degradation over time. Our results showed that microbial communities in leaf litter were strongly influenced by both FMPs and sampling date. The results from nonmetric multidimensional scaling (NMDS) ordination revealed distinct patterns of bacterial and fungal successions over time in leaf litter. We demonstrated that FMPs and sampling dates can influence a range of factors, including leaf litter quality, microbial macronutrients, and pH, which significantly correlate with microbial community successions.


Subject(s)
Bacteria/genetics , Forestry/methods , Forests , Fungi/genetics , Plant Leaves/chemistry , Soil Microbiology , Bacteria/metabolism , DNA, Intergenic/genetics , DNA, Intergenic/metabolism , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/metabolism , Fungi/metabolism , Germany
SELECTION OF CITATIONS
SEARCH DETAIL
...