Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
World J Clin Cases ; 12(23): 5382-5403, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39156083

ABSTRACT

BACKGROUND: Intracranial aneurysms (IAs) pose significant health risks, attributable to their potential for sudden rupture, which can result in severe outcomes such as stroke and death. Despite extensive research, the variability of aneurysm behavior, with some remaining stable for years while others rupture unexpectedly, remains poorly understood. AIM: To employ bibliometric analysis to map the research landscape concerning risk factors associated with IAs rupture. METHODS: A systematic literature review of publications from 2004 to 2023 was conducted, analyzing 3804 documents from the Web of Science Core Collection database, with a focus on full-text articles and reviews in English. The analysis encompassed citation and co-citation networks, keyword bursts, and temporal trends to delineate the evolution of research themes and collaboration patterns. Advanced software tools, CiteSpace and VOSviewer, were utilized for comprehensive data visualization and trend analysis. RESULTS: Analysis uncovered a total of 3804 publications on IA rupture risk factors between 2006 and 2023. Research interest surged after 2013, peaking in 2023. The United States led with 28.97% of publications, garnering 37706 citations. Notable United States-China collaborations were observed. Capital Medical University produced 184 publications, while Utrecht University boasted a citation average of 69.62 per publication. "World Neurosurgery" published the most papers, contrasting with "Stroke", the most cited journal. The PHASES score from "Lancet Neurology" emerged as a vital rupture risk prediction tool. Early research favored endovascular therapy, transitioning to magnetic resonance imaging and flow diverters. "Subarachnoid hemorrhage" stood out as a recurrent keyword. CONCLUSION: This study assesses global IA research trends and highlights crucial gaps, guiding future investigations to improve preventive and therapeutic approaches.

2.
Nat Prod Res ; : 1-10, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39084318

ABSTRACT

The Paeonia ostii, also known as "Feng Dan" have a crucial role in folk medicine to treat lumbar muscles strain, knee osteoarthritis and cervical spondylosis. In this study, four new phenolic compounds, specifically Paeoniaostiph A-E (1-4) phenolic compounds were characterised through spectroscopic techniques, including 1D and 2D NMR, HRESIMS, UV, IR, and electronic circular dichroism computations to explore their structures. Cytotoxicity and NO production inhibition of the new phenolic compounds were also studied. The results of the cytotoxicity experiment showed that compound 1 is cytotoxic to two human cancer cell lines with IC50 values ranging from 13.3 to 13.5 µM. Compounds 1 and 2 showed certain inhibitory activity on NO production. This is the first report on isolating the components from natural sources.

3.
Aging (Albany NY) ; 16(14): 11434-11445, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39068670

ABSTRACT

BACKGROUND: The expression patterns and prognostic value of Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) family genes in breast cancer remain to be elucidated. METHODS: The expression levels, prognostic value, and biological function of PLODs were determined using Oncomine, cBioPortal, GEPIA, Timer, UALCAN, PrognoScan, GeneMANIA, Metascape, and breast cancer tissue microarrays. RESULTS: The expressions of PLOD1 and PLOD3 were upregulated in breast cancer tissues, indicating worse clinical stages. High expression levels of PLOD family genes were associated with worse disease-free survival and distant metastasis-free survival, while high expression levels of PLOD1 and PLOD3 were related to worse overall survival in all breast cancer patients. The levels of PLOD family genes were all significantly higher in the age ≤51 y group, HR-negative patients, and triple negative breast cancer (TNBC) patients. They are associated with tumor-infiltrating immune cells (TIICs), including CD4+ T cells, CD8+ T cells, B cells, macrophages, neutrophils, and dendritic cells. According to co-expression gene analysis and functional enrichment, they are associated with protein hydroxylation, collagen biosynthesis and modifying enzymes, collagen metabolism, RNA splicing, extracellular matrix organization, VEGFA-VEGFR2 signaling pathway, and skeletal system development. Immunohistochemistry showed that the expressions of all PLOD family genes were significantly elevated in breast cancer tissues. PLOD1 expression was positively correlated with ER, TNBC status, and tumor grade. PLOD2 expression was positively connected with Ki-67 status. PLOD3 expression was positively related with age and tumor grade. CONCLUSIONS: PLOD family genes are novel potential prognostic biomarkers for breast cancer, and targeting PLOD inhibitors might be an effective strategy for breast cancer therapy.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase , Humans , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Female , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Prognosis , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism
5.
Org Lett ; 26(27): 5657-5663, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38941517

ABSTRACT

A protocol for the electrooxidative [3+2] annulation to generate indolo[2,3-b]indoles in an undivided cell is reported. It exhibits good yields with excellent regioselectivities and tolerates various functional groups without external chemical oxidants. Cyclic voltammetry and density functional theory calculations indicate that the [3+2] annulation is initiated by the simultaneous anodic oxidation of indole and aniline derivatives, and the step to determine the rate relies on the combination of radical cations.

6.
Sci Adv ; 10(13): eadl4842, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552028

ABSTRACT

The high-capacity advantage of lithium metal anode was compromised by common use of copper as the collector. Furthermore, lithium pulverization associated with "dead" Li accumulation and electrode cracking deteriorates the long-term cyclability of lithium metal batteries, especially under realistic test conditions. Here, we report an ultralight, integrated anode of polyimide-Ag/Li with dual anti-pulverization functionality. The silver layer was initially chemically bonded to the polyimide surface and then spontaneously diffused in Li solid solution and self-evolved into a fully lithiophilic Li-Ag phase, mitigating dendrites growth or dead Li. Further, the strong van der Waals interaction between the bottommost Li-Ag and polyimide affords electrode structural integrity and electrical continuity, thus circumventing electrode pulverization. Compared to the cutting-edge anode-free cells, the batteries pairing LiNi0.8Mn0.1Co0.1O2 with polyimide-Ag/Li afford a nearly 10% increase in specific energy, with safer characteristics and better cycling stability under realistic conditions of 1× excess Li and high areal-loading cathode (4 milliampere hour per square centimeter).

7.
Nat Commun ; 15(1): 1483, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374064

ABSTRACT

Aliphatic allylic amines are common in natural products and pharmaceuticals. The oxidative intermolecular amination of C(sp3)-H bonds represents one of the most straightforward strategies to construct these motifs. However, the utilization of widely internal alkenes with amines in this transformation remains a synthetic challenge due to the inefficient coordination of metals to internal alkenes and excessive coordination with aliphatic and aromatic amines, resulting in decreasing the reactivity of the catalyst. Here, we present a regioselective Cu-catalyzed oxidative allylic C(sp3)-H amination of internal olefins with azodiformates to these problems. A removable bidentate directing group is used to control the regiochemistry and stabilize the π-allyl-metal intermediate. Noteworthy is the dual role of azodiformates as both a nitrogen source and an electrophilic oxidant for the allylic C-H activation. This protocol features simple conditions, remarkable scope and functional group tolerance as evidenced by >40 examples and exhibits high regioselectivity and excellent E/Z selectivity.

8.
Angew Chem Int Ed Engl ; 63(5): e202316087, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38093609

ABSTRACT

Solid-state lithium-sulfur batteries have shown prospects as safe, high-energy electrochemical storage technology for powering regional electrified transportation. Owing to limited ion mobility in crystalline polymer electrolytes, the battery is incapable of operating at subzero temperature. Addition of liquid plasticizer into the polymer electrolyte improves the Li-ion conductivity yet sacrifices the mechanical strength and interfacial stability with both electrodes. In this work, we showed that by introducing a spherical hyperbranched solid polymer plasticizer into a Li+ -conductive linear polymer matrix, an integrated dynamic cross-linked polymer network was built to maintain fully amorphous in a wide temperature range down to subzero. A quasi-solid polymer electrolyte with a solid mass content >90 % was prepared from the cross-linked polymer network, and demonstrated fast Li+ conduction at a low temperature, high mechanical strength, and stable interfacial chemistry. As a result, solid-state lithium-sulfur batteries employing the new electrolyte delivered high reversible capacity and long cycle life at 25 °C, 0 °C and -10 °C to serve energy storage at complex environmental conditions.

9.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2757-2766, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37897283

ABSTRACT

Rational delineation of ecological functional areas and clarification of their driving factors are of significance for maintaining regional ecosystem stability. We assessed six ecosystem services of Sihu Lake Basin located in Jianghan Plain using InVEST and RUSLE models and recreational scoring methods. By using K-means clustering, we identified the ecosystem service bundles, and delineated the ecological functional areas in combination with ecological sensitivity and ecosystem service bundles. The dominant driving factors of different ecological functional areas were analyzed by Geodetector. The results showed that the spatial distributions of habitat quality and carbon sequestration services were similar, with high values being mainly concentrated in Changhu Lake Basin and Honghu Lake Basin. However, the spatial distributions of crop production and soil conservation services were different, with high-value areas concentrated in the northwest area with mountains. The high values of water production service were mainly concentrated in the eastern part of Honghu Lake Basin, while the high-value areas of ecological recreation service were mainly concentrated in the northwest area and the southern part of Honghu Lake Basin. The Sihu Lake Basin could be classified into crop production bundle, habitat quality bundle, and urban living bundle according to cluster analysis. The low ecological sensitivity areas accounted for 59.0% of the Sihu Lake Basin. We classified the study area into ecological restoration areas, ecological conservation areas, ecological transition areas, ecological development areas, and comprehensive use areas by combination of ecological sensitivity and ecosystem service bundles. The geodetector results indicated that the driving factors of each ecological function zone were significantly different. The natural factors significantly influenced the ecological restoration zone, while the normalized vegetation index and population density were the main influencing factors in the ecological conservation zone and the ecological development zone, respectively. Land use type was the main influencing factor in the ecological transition zone and the comprehensive use zone. The results could provide important support for coordinated regional social development and environmental protection.


Subject(s)
Ecosystem , Lakes , China , Soil , Conservation of Natural Resources
10.
Front Pharmacol ; 14: 1200252, 2023.
Article in English | MEDLINE | ID: mdl-37693898

ABSTRACT

Background: Chronic urticaria (CU) is a commonly seen skin disorder featured by recurring wheals, with or without angioedema, lasting for at least 6 weeks. Runzao Zhiyang capsule (RZC) has been widely applied to treat patients with CU. This study is aimed at systematically evaluating the efficacy and safety of RZC in treating CU. Materials and Methods: Randomized controlled trials (RCTs) of RZC on treating CU from Chinese and English databases were searched. Data were collected by two independent researchers. The Cochrane Collaboration tool was adopted for evaluating the risk of bias. The meta-analysis was performed with Review Manager 5.3 software. Sensitivity analysis and publication bias assessment were conducted by Stata 14.0 software. Results: Totally 27 studies were included in the analysis, involving 2,703 patients. The pooled results showed that compared with second-generation H1-antihistamines (sgAHs) therapy alone, RZC combined with sgAHs is more effective in improving the total effective rate (RR = 1.32, 95% CI: 1.25 to 1.39, p < 0.00001), the quality of life measured by Dermatology Life Quality Index (DLQI) (MD = -2.63, 95% CI: -3.68 to -1.58, p < 0.00001) and the serum IFN-γ level (SMD = 3.10, 95% CI: 1.58 to 4.62, p < 0.0001), and reducing the recurrence rate (RR = 0.39, 95% CI: 0.27 to 0.55, p < 0.00001), the serum total IgE level (SMD = -2.44, 95% CI: -3.51 to -1.38, p < 0.00001), the serum IL-4 level (SMD = -2.96, 95% CI: -4.10 to -1.83, p < 0.00001), and the incidence of adverse events including dizziness, fatigue, dry mouth, and constipation (RR = 0.53, 95% CI: 0.33 to 0.85, p = 0.009; RR = 0.46, 95% CI: 0.26 to 0.84, p = 0.01; RR = 0.57, 95% CI: 0.34 to 0.95, p = 0.03; RR = 0.24, 95% CI: 0.07 to 0.85, p = 0.03). Conclusion: The current evidence indicates that RZC may be an efficient therapeutic regimen in patients with CU. Nevertheless, owing to the suboptimal quality of the included studies, more large-scale, well-designed RCTs are required to verify the obtained findings. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/; Identifier: CRD42022313177.

11.
Neural Regen Res ; 18(10): 2268-2277, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37056147

ABSTRACT

Controlled cortical impingement is a widely accepted method to induce traumatic brain injury to establish a traumatic brain injury animal model. A strike depth of 1 mm at a certain speed is recommended for a moderate brain injury and a depth of > 2 mm is used to induce severe brain injury. However, the different effects and underlying mechanisms of these two model types have not been proven. This study investigated the changes in cerebral blood flow, differences in the degree of cortical damage, and differences in motor function under different injury parameters of 1 and 2 mm at injury speeds of 3, 4, and 5 m/s. We also explored the functional changes and mitochondrial damage between the 1 and 2 mm groups in the acute (7 days) and chronic phases (30 days). The results showed that the cerebral blood flow in the injured area of the 1 mm group was significantly increased, and swelling and bulging of brain tissue, increased vascular permeability, and large-scale exudation occurred. In the 2 mm group, the main pathological changes were decreased cerebral blood flow, brain tissue loss, and cerebral vasospasm occlusion in the injured area. Substantial motor and cognitive impairments were found on day 7 after injury in the 2 mm group; at 30 days after injury, the motor function of the 2 mm group mice recovered significantly while cognitive impairment persisted. Transcriptome sequencing showed that compared with the 1 mm group, the 2 mm group expressed more ferroptosis-related genes. Morphological changes of mitochondria in the two groups on days 7 and 30 using transmission electron microscopy revealed that on day 7, the mitochondria in both groups shrank and the vacuoles became larger; on day 30, the mitochondria in the 1 mm group became larger, and the vacuoles in the 2 mm group remained enlarged. By analyzing the proportion of mitochondrial subgroups in different groups, we found that the model mice had different patterns of mitochondrial composition at different time periods, suggesting that the difference in the degree of damage among traumatic brain injury groups may reflect the mitochondrial changes. Taken together, differences in mitochondrial morphology and function between the 1 and 2 mm groups provide a new direction for the accurate classification of traumatic brain injury. Our results provide reliable data support and evaluation methods for promoting the establishment of standard mouse controlled cortical impingement model guidelines.

12.
Adv Mater ; 35(24): e2300350, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36990460

ABSTRACT

The uncontrollable dendrite growth and unstable solid electrolyte interphase have long plagued the practical application of Li metal batteries. Herein, a dual-layered artificial interphase LiF/LiBO-Ag is demonstrated that is simultaneously reconfigured via an electrochemical process to stabilize the lithium anode. This dual-layered interphase consists of a heterogeneous LiF/LiBO glassy top layer with ultrafast Li-ion conductivity and lithiophilic Li-Ag alloy bottom layer, which synergistically regulates the dendrite-free Li deposition, even at high current densities. As a result, Li||Li symmetric cells with LiF/LiBO-Ag interphase achieve an ultralong lifespan (4500 h) at an ultrahigh current density and area capacity (20 mA cm-2 , 20 mAh cm-2 ). LiF/LiBO-Ag@Li anodes are successfully applied in quasi-solid-state batteries, showing excellent cycling performances in symmetric cells (8 mA cm-2 , 8 mAh cm-2 , 5000 h) and full cells. Furthermore, a practical quasi-solid-state pouch cell coupling with a high-nickel cathode exhibits stable cycling with a capacity retention of over 91% after 60 cycles at 0.5 C, which is comparable or even better than that in liquid-state pouch cells. Additionally, a high-energy-density quasi-solid-state pouch cell (10.75 Ah, 448.7 Wh kg-1 ) is successfully accomplished. This well-orchestrated interphase design provides new guidance in engineering highly stable interphase toward practical high-energy-density lithium metal batteries.

13.
Opt Express ; 31(4): 6327-6341, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36823892

ABSTRACT

To improve the color conversion performance, we study the nanoscale-cavity effects on the emission efficiency of a colloidal quantum dot (QD) and the Förster resonance energy transfer (FRET) from quantum well (QW) into QD in a GaN porous structure (PS). For this study, we insert green-emitting QD (GQD) and red-emitting QD (RQD) into the fabricated PSs in a GaN template and a blue-emitting QW template, and investigate the behaviors of the photoluminescence (PL) decay times and the intensity ratios of blue, green, and red lights. In the PS samples fabricated on the GaN template, we observe the efficiency enhancements of QD emission and the FRET from GQD into RQD, when compared with the samples of surface QDs, which is attributed to the nanoscale-cavity effect. In the PS samples fabricated on the QW template, the FRET from QW into QD is also enhanced. The enhanced FRET and QD emission efficiencies in a PS result in an improved color conversion performance. Because of the anisotropic PS in the sample surface plane, the polarization dependencies of QD emission and FRET are observed.

14.
Pharmgenomics Pers Med ; 16: 29-36, 2023.
Article in English | MEDLINE | ID: mdl-36714524

ABSTRACT

Immune checkpoint inhibitors (ICIs) have been shown to be significant in improving the overall survival rate in certain malignancies with poor prognoses. However, only 20-40% of patients achieve long-term benefits, highlighting the relevance of the factors that influence the treatment, which can help clinicians improve their results and guide the development of new immune checkpoint therapies. In this study, the current pharmacokinetic aspects associated with the ICIs and the factors influencing clinical efficacy were characterised, including in terms of drug metabolism, drug clearance, hormonal effects and immunosuppressive effects.

15.
Chinese Journal of Dermatology ; (12): 210-215, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-994463

ABSTRACT

Objective:To evaluate the real-world short-term effectiveness of ixekizumab in the treatment of psoriasis, and to investigate factors influencing the effectiveness.Methods:Baseline data and short-term effectiveness evaluation results were retrospectively collected from patients with psoriasis, who received ixekizumab treatment in Department of Dermatology, Xiangya Hospital from November 2019 to September 2021. A descriptive analysis was performed on the baseline characteristics of patients, continuous data were described as median (lower quartile, upper quartile), and categorical data were described as percentages. Comparisons of disease severity scores before and after the treatment with ixekizumab were performed using Wilcoxon signed-rank test or paired McNemar test. Multivariable logistic regression analysis was conducted to explore factors influencing the effectiveness of 4-week ixekizumab treatment.Results:A total of 118 patients with psoriasis were included, including 94 males and 24 females, and their age [ M ( Q1, Q3) ] was 43.4 (32.5, 53.0) years; plaque psoriasis (99 cases, 83.9%) and severe psoriasis (72 cases, 68.6%) predominated among the 118 patients, and skin lesions were mainly located on the scalp (59/116, 50.9%). Among the 49 patients who had received 2-week ixekizumab treatment, 27 (55.1%) achieved a 50% improvement in the psoriasis area and severity index (PASI) score (PASI50) ; after 4-week treatment, 44 (89.8%), 30 (61.2%), 13 (26.5%) and 10 (20.4%) patients achieved PASI50/75/90/100 respectively, and their PASI scores (2.1 [1.1, 7.1]), involved body surface area (3.9% [0.5%, 14.5%]), dermatology life quality index scores (1.0 [0.0, 2.0]) and physician global assessment (PGA) scores (1.0 [1.0, 3.0]) were significantly lower than the corresponding scores at baseline (12.4 [8.8, 23.2], 22.0% [11.3%, 43.4%], 6.0 [3.0, 11.0], 4.0 [3.0, 5.0], respectively; all P < 0.001]. Multivariable logistic regression analysis showed that the baseline body mass index was significantly associated with the PASI75 response rate ( OR = 0.814, 95% CI: 0.659 - 0.958, P = 0.029) and the proportion of patients with PGA0/1 ( OR = 0.743, 95% CI: 0.562 - 0.917, P = 0.017) after 4-week ixekizumab treatment, and the baseline BSA score was significantly associated with the proportion of patients with PGA0/1 after 4-week ixekizumab treatment ( OR = 0.924, 95% CI: 0.870 - 0.968, P = 0.003) . Conclusion:The 4-week ixekizumab treatment significantly decreased the severity of psoriasis, and may be more effective in patients with lower disease severity and lower body mass index at baseline.

16.
Front Neurol ; 14: 1324725, 2023.
Article in English | MEDLINE | ID: mdl-38288331

ABSTRACT

Subject: This study aims to compare the clinical efficacy of aspiration thrombectomy and stent retriever thrombectomy as first-line approaches for anterior circulation large vessel cardiogenic cerebral embolism and cryptogenic stroke. Method: This retrospective observational study included patients with anterior circulation large vessel cardiogenic cerebral embolism and cryptogenic stroke treated with endovascular therapy. Patients were grouped according to the first-line approach they received: aspiration thrombectomy or stent retriever thrombectomy. The primary outcome measure was the change in the National Institute of Health Stroke Scale (NIHSS) score from preoperative to immediate postoperative and from preoperative to discharge. Secondary indicators included the rate of favorable prognosis at discharge [Modified Rankin Scale (mRS) score ≤ 2], successful vessel recanalization rate [modified Treatment in Cerebral Ischemia (mTICI) score ≥ 2b], time from successful femoral artery puncture to successful vessel recanalization, and perioperative complications. Result: The study included 127 cases, with 1 case withdrawal after enrollment due to a stroke of another determined cause, with 83 in the aspiration thrombectomy group and 43 cases in the stent retriever thrombectomy group. The change in NIHSS score from preoperative to immediate postoperative was 5 (1, 8) in the aspiration thrombectomy group and 1 (0, 4.5) in the stent retriever thrombectomy group. The change from preoperative to discharge was 8 (5, 12) in the aspiration thrombectomy group and 4 (0, 9) in the stent retriever thrombectomy group. The aspiration thrombectomy group exhibited significantly better prognosis rates and shorter time from successful femoral artery puncture to successful vessel recanalization. There were no significant differences between the two groups in terms of successful vessel recanalization rates and perioperative complications. Conclusion: As a first-line approach for anterior circulation large vessel cardiogenic cerebral embolism and cryptogenic stroke, aspiration thrombectomy leads to better improvement in neurological functional deficits and prognosis rates compared to stent retriever thrombectomy.

17.
Nanomaterials (Basel) ; 12(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36364699

ABSTRACT

The surfactant modification of catalyst morphology is considered as an effective method to improve photocatalytic performance. In this work, the visible-light-driven composite photocatalyst was obtained by growing CdS nanoparticles in the cubic crystal structure of CdCO3, which, after surfactant modification, led to the formation of CdCO3 elliptical spheres. This reasonable composite-structure-modification design effectively increased the specific surface area, fully exposing the catalytic-activity check point. Cd2+ from CdCO3 can enter the CdS crystal structure to generate lattice distortion and form hole traps, which productively promoted the separation and transfer of CdS photogenerated electron-hole pairs. The prepared 5-CdS/CdCO3@SDS exhibited excellent Cr(VI) photocatalytic activity with a reduction efficiency of 86.9% within 30 min, and the reduction rate was 0.0675 min-1, which was 15.57 and 14.46 times that of CdS and CdCO3, respectively. Finally, the main active substances during the reduction process, the photogenerated charge transfer pathways related to heterojunctions and the catalytic mechanism were proposed and analyzed.

18.
Medicine (Baltimore) ; 101(42): e31336, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36281130

ABSTRACT

OBJECTIVE: The structural maintenance of chromosome (SMC) gene family, including 6 proteins, is involved in a wide range of biological functions in different human cancers. Nevertheless, there is little research on the expression patterns, potential functions and prognostic value of SMC genes in hepatocellular carcinoma (HCC). Based on publicly available databases and integrative bioinformatics analysis, we tried to determine the value of SMC gene expression in predicting the risk of developing HCC. METHODS: The expression and copy number variations data of SMC family members were obtained from TCGA (The Cancer Genome Atlas). We identified the prognostic values of SMC family members and their clinical features. GSEA (Gene Set Enrichment Analysis) was conducted to detect the mechanism underlying the involvement of SMC family members in liver cancer. We used Tumor Immune Estimation Resource database to explore the associations between TIICs (Tumor Immune Infiltrating Cells) and the SMC family members. RESULTS: Our analysis proved that downregulation of SMC family members was common modification in HCC patients. In HCC, the expression of SMC1A, SMC2, SMC3, SMC4, SMC6 were upregulated. Upregulation of SMC2, SMC3, and SMC4, along with the clinical stage of HCC, were associated with a poor prognosis according to the results of univariate and multivariate Cox proportional hazards regression analysis. SMC2, SMC3, and SMC4 are also related to tumor purity and immune infiltration levels of HCC. The GSEA results proved that SMC family members take part in numerous biological processes underlying tumorigenesis. CONCLUSION: In this study, we comprehensively analyzed the expression of SMC family members in patients with HCC. This can provide insights for further investigation of the SMC members as potential therapeutic targets in HCC and suggest that the use of SMC inhibitor targeting SMC2, SMC3, and SMC4 can be a practical strategy for the therapy of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Prognosis , Liver Neoplasms/pathology , DNA Copy Number Variations , Chromosomes/metabolism
19.
Opt Express ; 30(17): 31322-31335, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36242217

ABSTRACT

Although the method of inserting colloidal quantum dots (QDs) into deep nano-holes fabricated on the top surface of a light-emitting diode (LED) has been widely used for producing effective Förster resonance energy transfer (FRET) from the LED quantum wells (QWs) into the QDs to enhance the color conversion efficiency, an important mechanism for enhancing energy transfer in such an LED structure was overlooked. This mechanism, namely, the nanoscale-cavity effect, represents a near-field Purcell effect and plays a crucially important role in enhancing the color conversion efficiency. Here, we demonstrate the results of LED performance, time-resolved photoluminescence (TRPL), and numerical simulation to elucidate the nanoscale-cavity effect on color conversion by inserting a photoresist solution of red-emitting QDs into the nano-holes fabricated on a blue-emitting QW LED. Based on the TRPL study of the inserted QDs in a nano-hole structure fabricated on an un-doped GaN template of no QW, it is found that the emission efficiency of the inserted QDs is significantly increased due to the nanoscale-cavity effect. From the simulation study, it is confirmed that this effect can also increase the FRET efficiency, particularly for those radiating dipoles in the QWs oriented perpendicular to the sidewalls of the nano-holes. In the nanoscale-cavity effect, the enhanced near field distribution inside a nano-hole excited by a light emitter modifies its own radiation behavior through the Purcell effect such that its far-field emission becomes stronger.

20.
J Am Chem Soc ; 144(40): 18240-18245, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36169321

ABSTRACT

In Li-ion batteries, functional cosolvents could significantly improve the specific performance of the electrolyte, for example, the flame retardancy. In case the cosolvent shows strong Li+-coordinating ability, it could adversely influence the electrochemical Li+-intercalation reaction of the electrode. In this work, a noncoordinating functional cosolvent was proposed to enrich the functionality of the electrolyte while avoiding interference with the Li storage process. Hexafluorocyclotriphosphazene, an efficient flame-retardant agent with proper physicochemical properties, was chosen as a cosolvent for preparing functional electrolytes. The nonpolar phosphazene molecules with low electron-donating ability do not coordinate with Li+ and thus are excluded from the primary solvation sheath. In graphite-anode-based Li-ion batteries, the phosphazene molecules do not cointercalate with Li+ into the graphite lattice during the charging process, which helps to maintain integral anode structure and interface and contributes to stable cycling. The noncoordinating cosolvent was also applied to other types of electrode materials and batteries, paving a new way for high-performance electrochemical energy storage systems with customizable functions.

SELECTION OF CITATIONS
SEARCH DETAIL