Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 400
Filter
2.
Blood Cancer Discov ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713827

ABSTRACT

In this commentary we discuss the investigation into reports of T-cell malignancies following CAR T-cell therapy. We argue that while these cases should be thoroughly examined, current data suggests that such risks with autolgous CAR T cells are remarkably low compared to other cancer treatments. We also emphasize the importance of continued research, transparent reporting, and participation in post-authorization safety studies.

3.
Nat Commun ; 15(1): 3937, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729924

ABSTRACT

Human natural killer (NK) cell-based therapies are under assessment for treating various cancers, but cryopreservation reduces both the recovery and function of NK cells, thereby limiting their therapeutic feasibility. Using cryopreservation protocols optimized for T cells, here we find that ~75% of NK cells die within 24 h post-thaw, with the remaining cells displaying reduced cytotoxicity. Using CRISPR-Cas9 gene editing and confocal microscopy, we find that cryopreserved NK cells largely die via apoptosis initiated by leakage of granzyme B from cytotoxic vesicles. Pretreatment of NK cells with a combination of Interleukins-15 (IL-15) and IL-18 prior to cryopreservation improves NK cell recovery to ~90-100% and enables equal tumour control in a xenograft model of disseminated Raji cell lymphoma compared to non-cryopreserved NK cells. The mechanism of IL-15 and IL-18-induced protection incorporates two mechanisms: a transient reduction in intracellular granzyme B levels via degranulation, and the induction of antiapoptotic genes.


Subject(s)
Apoptosis , Cryopreservation , Granzymes , Interleukin-15 , Interleukin-18 , Killer Cells, Natural , Granzymes/metabolism , Interleukin-15/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Interleukin-18/metabolism , Animals , Cryopreservation/methods , Mice , Cell Line, Tumor , CRISPR-Cas Systems
4.
Nat Commun ; 15(1): 3933, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730243

ABSTRACT

As a strategy to improve the therapeutic success of chimeric antigen receptor T cells (CART) directed against solid tumors, we here test the combinatorial use of CART and IMSA101, a newly developed stimulator of interferon genes (STING) agonist. In two syngeneic tumor models, improved overall survival is observed when mice are treated with intratumorally administered IMSA101 in addition to intravenous CART infusion. Transcriptomic analyses of CART isolated from tumors show elevated T cell activation, as well as upregulated cytokine pathway signatures, in particular IL-18, in the combination treatment group. Also, higher levels of IL-18 in serum and tumor are detected with IMSA101 treatment. Consistent with this, the use of IL-18 receptor negative CART impair anti-tumor responses in mice receiving combination treatment. In summary, we find that IMSA101 enhances CART function which is facilitated through STING agonist-induced IL-18 secretion.


Subject(s)
Interleukin-18 , Membrane Proteins , Receptors, Chimeric Antigen , Animals , Interleukin-18/metabolism , Membrane Proteins/agonists , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Humans , Cell Line, Tumor , Mice, Inbred C57BL , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Lymphocyte Activation/drug effects , Immunotherapy, Adoptive/methods , Female , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/drug therapy
7.
Nat Med ; 30(5): 1320-1329, 2024 May.
Article in English | MEDLINE | ID: mdl-38480922

ABSTRACT

Recurrent glioblastoma (rGBM) remains a major unmet medical need, with a median overall survival of less than 1 year. Here we report the first six patients with rGBM treated in a phase 1 trial of intrathecally delivered bivalent chimeric antigen receptor (CAR) T cells targeting epidermal growth factor receptor (EGFR) and interleukin-13 receptor alpha 2 (IL13Rα2). The study's primary endpoints were safety and determination of the maximum tolerated dose. Secondary endpoints reported in this interim analysis include the frequency of manufacturing failures and objective radiographic response (ORR) according to modified Response Assessment in Neuro-Oncology criteria. All six patients had progressive, multifocal disease at the time of treatment. In both dose level 1 (1 ×107 cells; n = 3) and dose level 2 (2.5 × 107 cells; n = 3), administration of CART-EGFR-IL13Rα2 cells was associated with early-onset neurotoxicity, most consistent with immune effector cell-associated neurotoxicity syndrome (ICANS), and managed with high-dose dexamethasone and anakinra (anti-IL1R). One patient in dose level 2 experienced a dose-limiting toxicity (grade 3 anorexia, generalized muscle weakness and fatigue). Reductions in enhancement and tumor size at early magnetic resonance imaging timepoints were observed in all six patients; however, none met criteria for ORR. In exploratory endpoint analyses, substantial CAR T cell abundance and cytokine release in the cerebrospinal fluid were detected in all six patients. Taken together, these first-in-human data demonstrate the preliminary safety and bioactivity of CART-EGFR-IL13Rα2 cells in rGBM. An encouraging early efficacy signal was also detected and requires confirmation with additional patients and longer follow-up time. ClinicalTrials.gov identifier: NCT05168423 .


Subject(s)
ErbB Receptors , Glioblastoma , Immunotherapy, Adoptive , Interleukin-13 Receptor alpha2 Subunit , Receptors, Chimeric Antigen , Humans , Glioblastoma/therapy , Glioblastoma/immunology , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Interleukin-13 Receptor alpha2 Subunit/immunology , Middle Aged , Male , Receptors, Chimeric Antigen/immunology , Female , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/pathology , Adult , Aged , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Injections, Spinal , Maximum Tolerated Dose
8.
Proc Natl Acad Sci U S A ; 121(13): e2319856121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38513098

ABSTRACT

The use of lipid nanoparticles (LNP) to encapsulate and deliver mRNA has become an important therapeutic advance. In addition to vaccines, LNP-mRNA can be used in many other applications. For example, targeting the LNP with anti-CD5 antibodies (CD5/tLNP) can allow for efficient delivery of mRNA payloads to T cells to express protein. As the percentage of protein expressing T cells induced by an intravenous injection of CD5/tLNP is relatively low (4-20%), our goal was to find ways to increase mRNA-induced translation efficiency. We showed that T cell activation using an anti-CD3 antibody improved protein expression after CD5/tLNP transfection in vitro but not in vivo. T cell health and activation can be increased with cytokines, therefore, using mCherry mRNA as a reporter, we found that culturing either mouse or human T cells with the cytokine IL7 significantly improved protein expression of delivered mRNA in both CD4+ and CD8+ T cells in vitro. By pre-treating mice with systemic IL7 followed by tLNP administration, we observed significantly increased mCherry protein expression by T cells in vivo. Transcriptomic analysis of mouse T cells treated with IL7 in vitro revealed enhanced genomic pathways associated with protein translation. Improved translational ability was demonstrated by showing increased levels of protein expression after electroporation with mCherry mRNA in T cells cultured in the presence of IL7, but not with IL2 or IL15. These data show that IL7 selectively increases protein translation in T cells, and this property can be used to improve expression of tLNP-delivered mRNA in vivo.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Interleukin-7 , Liposomes , Nanoparticles , Protein Biosynthesis , RNA, Messenger , Animals , Humans , Mice , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Interleukin-7/pharmacology , Protein Biosynthesis/drug effects , RNA, Messenger/metabolism , Mice, Inbred C57BL , Cells, Cultured , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology
10.
Nat Biomed Eng ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378820

ABSTRACT

The broader clinical use of bispecific T cell engagers for inducing anti-tumour toxicity is hindered by their on-target off-tumour toxicity and the associated neurotoxicity and cytokine-release syndrome. Here we show that the off-tumour toxicity of a supramolecular bispecific T cell engager binding to the T cell co-receptor CD3 and to the human epidermal growth factor receptor 2 on breast tumour cells can be halted by disengaging the T cells from the tumour cells via the infusion of the small-molecule drug amantadine, which disassembles the supramolecular aggregate. In mice bearing human epidermal growth factor receptor 2-expressing tumours and with a human immune system, high intravenous doses of such a 'switchable T cell nanoengager' elicited strong tumour-specific adaptive immune responses that prevented tumour relapse, while the infusion of amantadine restricted off-tumour toxicity, cytokine-release syndrome and neurotoxicity. Supramolecular chemistry may be further leveraged to control the anti-tumour activity and off-tumour toxicity of bispecific antibodies.

11.
Adv Mater ; : e2313226, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419362

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable clinical success in the treatment of hematological malignancies. However, producing these bespoke cancer-killing cells is a complicated ex vivo process involving leukapheresis, artificial T cell activation, and CAR construct introduction. The activation step requires the engagement of CD3/TCR and CD28 and is vital for T cell transfection and differentiation. Though antigen-presenting cells (APCs) facilitate activation in vivo, ex vivo activation relies on antibodies against CD3 and CD28 conjugated to magnetic beads. While effective, this artificial activation adds to the complexity of CAR T cell production as the beads must be removed prior to clinical implementation. To overcome this challenge, this work develops activating lipid nanoparticles (aLNPs) that mimic APCs to combine the activation of magnetic beads and the transfection capabilities of LNPs. It is shown that aLNPs enable one-step activation and transfection of primary human T cells with the resulting mRNA CAR T cells reducing tumor burden in a murine xenograft model, validating aLNPs as a promising platform for the rapid production of mRNA CAR T cells.

12.
Sci Rep ; 14(1): 3113, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326511

ABSTRACT

Loss of inflammatory effector function, such as cytokine production and proliferation, is a fundamental driver of failure in T cell therapies against solid tumors. Here, we used CRISPR/Cas9 to genetically disrupt ZFP36, an RNA binding protein that regulates the stability of mRNAs involved in T cell inflammatory function, such as the cytokines IL2 and IFNγ, in human T cells engineered with a clinical-stage mesothelin-targeting CAR to determine whether its disruption could enhance antitumor responses. ZFP36 disruption slightly increased antigen-independent activation and cytokine responses but did not enhance overall performance in vitro or in vivo in a xenograft tumor model with NSG mice. While ZFP36 disruption does not reduce the function of CAR-T cells, these results suggest that singular disruption of ZFP36 is not sufficient to improve their function and may benefit from a multiplexed approach.


Subject(s)
Immunotherapy, Adoptive , Mesothelin , Humans , Animals , Mice , Immunotherapy, Adoptive/methods , T-Lymphocytes/metabolism , Immunity , Cytokines/metabolism , Disease Models, Animal , Xenograft Model Antitumor Assays , Cell Line, Tumor , Tristetraprolin/genetics
13.
Blood Adv ; 8(9): 2182-2192, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38386999

ABSTRACT

ABSTRACT: Relapse after CD19-directed chimeric antigen receptor (CAR)-modified T cells remains a substantial challenge. Short CAR T-cell persistence contributes to relapse risk, necessitating novel approaches to prolong durability. CAR T-cell reinfusion (CARTr) represents a potential strategy to reduce the risk of or treat relapsed disease after initial CAR T-cell infusion (CARTi). We conducted a retrospective review of reinfusion of murine (CTL019) or humanized (huCART19) anti-CD19/4-1BB CAR T cells across 3 clinical trials or commercial tisagenlecleucel for relapse prevention (peripheral B-cell recovery [BCR] or marrow hematogones ≤6 months after CARTi), minimal residual disease (MRD) or relapse, or nonresponse to CARTi. The primary endpoint was complete response (CR) at day 28 after CARTr, defined as complete remission with B-cell aplasia. Of 262 primary treatments, 81 were followed by ≥1 reinfusion (investigational CTL019, n = 44; huCART19, n = 26; tisagenlecleucel, n = 11), representing 79 patients. Of 63 reinfusions for relapse prevention, 52% achieved CR (BCR, 15/40 [38%]; hematogones, 18/23 [78%]). Lymphodepletion was associated with response to CARTr for BCR (odds ratio [OR], 33.57; P = .015) but not hematogones (OR, 0.30; P = .291). The cumulative incidence of relapse was 29% at 24 months for CR vs 61% for nonresponse to CARTr (P = .259). For MRD/relapse, CR rate to CARTr was 50% (5/10), but 0/8 for nonresponse to CARTi. Toxicity was generally mild, with the only grade ≥3 cytokine release syndrome (n = 6) or neurotoxicity (n = 1) observed in MRD/relapse treatment. Reinfusion of CTL019/tisagenlecleucel or huCART19 is safe, may reduce relapse risk in a subset of patients, and can reinduce remission in CD19+ relapse.


Subject(s)
Antigens, CD19 , Immunotherapy, Adoptive , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Antigens, CD19/immunology , Antigens, CD19/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Child, Preschool , Female , Male , Receptors, Chimeric Antigen/therapeutic use , Adolescent , Recurrence , Retrospective Studies , Infant , Receptors, Antigen, T-Cell/therapeutic use , Treatment Outcome , T-Lymphocytes/immunology
14.
Proc Natl Acad Sci U S A ; 121(10): e2317735121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408246

ABSTRACT

Chimeric antigen receptor (CAR) T cell dysfunction is a major barrier to achieving lasting remission in hematologic cancers, especially in chronic lymphocytic leukemia (CLL). We have shown previously that Δ133p53α, an endogenous isoform of the human TP53 gene, decreases in expression with age in human T cells, and that reconstitution of Δ133p53α in poorly functional T cells can rescue proliferation [A. M. Mondal et al., J. Clin. Invest. 123, 5247-5257 (2013)]. Although Δ133p53α lacks a transactivation domain, it can form heterooligomers with full-length p53 and modulate the p53-mediated stress response [I. Horikawa et al., Cell Death Differ. 24, 1017-1028 (2017)]. Here, we show that constitutive expression of Δ133p53α potentiates the anti-tumor activity of CD19-directed CAR T cells and limits dysfunction under conditions of high tumor burden and metabolic stress. We demonstrate that Δ133p53α-expressing CAR T cells exhibit a robust metabolic phenotype, maintaining the ability to execute effector functions and continue proliferating under nutrient-limiting conditions, in part due to upregulation of critical biosynthetic processes and improved mitochondrial function. Importantly, we show that our strategy to constitutively express Δ133p53α improves the anti-tumor efficacy of CAR T cells generated from CLL patients that previously failed CAR T cell therapy. More broadly, our results point to the potential role of the p53-mediated stress response in limiting the prolonged antitumor functions required for complete tumor clearance in patients with high disease burden, suggesting that modulation of the p53 signaling network with Δ133p53α may represent a translationally viable strategy for improving CAR T cell therapy.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Antigens, CD19 , Cell- and Tissue-Based Therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
16.
Mol Ther Methods Clin Dev ; 32(1): 101186, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38282894

ABSTRACT

The use of lentiviral vectors in cell and gene therapy is steadily increasing, both in commercial and investigational therapies. Although existing data increasingly support the usefulness and safety of clinical-grade lentiviral vectors used in cell manufacturing, comprehensive studies specifically addressing their long-term stability are currently lacking. This is significant considering the high cost of producing and testing GMP-grade vectors, the limited number of production facilities, and lengthy queue for production slots. Therefore, an extended shelf life is a critical attribute to justify the investment in large vector lots for investigational cell therapies. This study offers a thorough examination of essential stability attributes, including vector titer, transduction efficiency, and potency for a series of clinical-grade vector lots, each assessed at a minimum of 36 months following their date of manufacture. The 13 vector lots included in this study were used for cell product manufacturing in 16 different clinical trials, and at the time of the analysis had a maximum storage time at -80°C of up to 8 years. The results emphasize the long-term durability and efficacy of GMP-grade lentiviral vectors for use in ex vivo cell therapy manufacturing.

17.
Nat Med ; 30(4): 984-989, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38266761

ABSTRACT

We report a T cell lymphoma (TCL) occurring 3 months after anti-CD19 chimeric antigen receptor (CAR) T cell immunotherapy for non-Hodgkin B cell lymphoma. The TCL was diagnosed from a thoracic lymph node upon surgery for lung cancer. The TCL exhibited CD8+ cytotoxic phenotype and a JAK3 variant, while the CAR transgene was very low. The T cell clone was identified at low levels in the blood before CAR T infusion and in lung cancer. To assess the overall risk of secondary primary malignancy after commercial CAR T (CD19, BCMA), we analyzed 449 patients treated at the University of Pennsylvania. At a median follow-up of 10.3 months, 16 patients (3.6%) had a secondary primary malignancy. The median onset time was 26.4 and 9.7 months for solid and hematological malignancies, respectively. The projected 5-year cumulative incidence is 15.2% for solid and 2.3% for hematological malignancies. Overall, one case of TCL was observed, suggesting a low risk of TCL after CAR T.


Subject(s)
Hematologic Neoplasms , Lung Neoplasms , Lymphoma, B-Cell , Lymphoma, T-Cell , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell/genetics , Antigens, CD19
18.
Am J Hematol ; 99(5): 910-921, 2024 May.
Article in English | MEDLINE | ID: mdl-38269484

ABSTRACT

Effective cellular therapy using CD19 chimeric antigen receptor T-cells for the treatment of advanced B-cell malignancies raises the question of whether the administration of adoptive cellular therapy (ACT) posttransplant could reduce relapse and improve survival. Moreover, several early phase clinical studies have shown the potential beneficial effects of administration of tumor-associated antigen-specific T-cells and natural killer cells posttransplant for high-risk patients, aiming to decrease relapse and possibly improve survival. In this article, we present an in-depth review of ACT after transplantation, which has the potential to significantly improve the efficacy of this procedure and revolutionize this field.


Subject(s)
Hematopoietic Stem Cell Transplantation , Neoplasm Recurrence, Local , Humans , Neoplasm Recurrence, Local/etiology , T-Lymphocytes , Killer Cells, Natural , Hematopoietic Stem Cell Transplantation/methods , Recurrence , Immunotherapy, Adoptive/methods , Antigens, CD19
19.
Blood ; 143(2): 139-151, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37616575

ABSTRACT

ABSTRACT: Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , Humans , Mice , Animals , Multiple Myeloma/metabolism , CD28 Antigens/metabolism , T-Lymphocytes , B-Cell Maturation Antigen/metabolism , Neoplasm Recurrence, Local/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...