Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 4(11): 3779-3791, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-33429595

ABSTRACT

Surface endothelialization could improve the long-term performance of vascular grafts and stents. We previously demonstrated that aerosol-generated fibronectin-derived peptide micropatterns consisting of GRGDS spots over a WQPPRARI background increase endothelial cell yields in static cultures. We developed a novel fluorophore-tagged RGD peptide (RGD-TAMRA) to visualize cell-surface interactions in real-time. Here, we studied the dynamics of endothelial cell response to laminar flow on these peptide-functionalized surfaces. Endothelial cells were exposed to 22 dyn/cm2 wall shear stress while acquiring time-lapse images. Cell surface coverage and cell alignment were quantified by undecimated wavelet transform multivariate image analysis. Similar to gelatin-coated surfaces, surfaces with uniform RGD-TAMRA distribution led to cell retention and rapid cell alignment (∼63% of the final cell alignment was reached within 1.5 h), contrary to the micropatterned surfaces. The RGD-TAMRA peptide is a promising candidate for endothelial cell retention under flow, and the spray-based micropatterned surfaces are more promising for static cultures.

2.
Biotechnol Bioeng ; 114(1): 141-153, 2017 01.
Article in English | MEDLINE | ID: mdl-27477880

ABSTRACT

Cell morphology is an important macroscopic indicator of cellular physiology and is increasingly used as a mean of probing culture state in vitro. Phase contrast microscopy (PCM) is a valuable tool for observing live cells morphology over long periods of time with minimal culture artifact. Two general approaches are commonly used to analyze images: individual object segmentation and characterization by pattern recognition. Single-cell segmentation is difficult to achieve in PCM images of adherent cells since their contour is often irregular and blurry, and the cells bundle together when the culture reaches confluence. Alternatively, pattern recognition approaches such as the undecimated wavelet transform multivariate image analysis (UWT-MIA), allow extracting textural features from PCM images that are correlated with cellular morphology. A partial least squares (PLS) regression model built using textural features from a set of 200 ground truth images was shown to predict the distribution of cellular morphological features (major and minor axes length, orientation, and roundness) with good accuracy for most images. The PLS models were then applied on a large dataset of 631,136 images collected from live myoblast cell cultures acquired under different conditions and grown in two different culture media. The method was found sensitive to morphological changes due to cell growth (culture time) and those introduced by the use of different culture media, and was able to distinguish both sources of variations. The proposed approach is promising for application on large datasets of PCM live-cell images to assess cellular morphology and growth kinetics in real-time which could be beneficial for high-throughput screening as well as automated cell culture kinetics assessment and control applications. Biotechnol. Bioeng. 2017;114: 141-153. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cell Shape/physiology , Image Processing, Computer-Assisted/methods , Microscopy, Phase-Contrast/methods , Wavelet Analysis , Algorithms , Cell Line , Humans , Myoblasts/cytology
3.
Biomaterials ; 35(3): 879-90, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24183170

ABSTRACT

The long-term patency rates of vascular grafts and stents are limited by the lack of surface endothelialisation of the implanted materials. We have previously reported that GRGDS and WQPPRARI peptide micropatterns increase the endothelialisation of prosthetic materials in vitro. To investigate the mechanisms by which the peptide micropatterns affect endothelial cell adhesion and proliferation, a TAMRA fluorophore-tagged RGD peptide was designed. Live cell imaging revealed that the micropatterned surfaces led to directional cell spreading dependent on the location of the RGD-TAMRA spots. Focal adhesions formed within 3 h on the micropatterned surfaces near RGD-TAMRA spot edges, as expected for cell regions experiencing high tension. Similar levels of focal adhesion kinase phosphorylation were observed after 3 h on the micropatterned surfaces and on surfaces treated with RGD-TAMRA alone, suggesting that partial RGD surface coverage is sufficient to elicit integrin signaling. Lastly, endothelial cell expansion was achieved in serum-free conditions on gelatin-coated, RGD-TAMRA treated or micropatterned surfaces. These results show that these peptide micropatterns mainly impacted cell adhesion kinetics rather than cell proliferation. This insight will be useful for the optimization of micropatterning strategies to improve vascular biomaterials.


Subject(s)
Blood Vessel Prosthesis , Coated Materials, Biocompatible/chemistry , Endothelial Cells/cytology , Fluorescent Dyes/chemistry , Oligopeptides/chemistry , Rhodamines/chemistry , Cell Adhesion , Cells, Cultured , Fibronectins/chemistry , Humans
4.
Microsc Microanal ; 19(4): 855-66, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23718977

ABSTRACT

Acquiring and processing phase-contrast microscopy images in wide-field long-term live-cell imaging and high-throughput screening applications is still a challenge as the methodology and algorithms used must be fast, simple to use and tune, and as minimally intrusive as possible. In this paper, we developed a simple and fast algorithm to compute the cell-covered surface (degree of confluence) in phase-contrast microscopy images. This segmentation algorithm is based on a range filter of a specified size, a minimum range threshold, and a minimum object size threshold. These parameters were adjusted in order to maximize the F-measure function on a calibration set of 200 hand-segmented images, and its performance was compared with other algorithms proposed in the literature. A set of one million images from 37 myoblast cell cultures under different conditions were processed to obtain their cell-covered surface against time. The data were used to fit exponential and logistic models, and the analysis showed a linear relationship between the kinetic parameters and passage number and highlighted the effect of culture medium quality on cell growth kinetics. This algorithm could be used for real-time monitoring of cell cultures and for high-throughput screening experiments upon adequate tuning.


Subject(s)
Cell Proliferation , Image Processing, Computer-Assisted/methods , Microscopy, Phase-Contrast/methods , Myoblasts/cytology , Myoblasts/physiology , Algorithms , Automation, Laboratory/methods , Cells, Cultured , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...