Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Oncol ; 13: 1280977, 2023.
Article in English | MEDLINE | ID: mdl-38144523

ABSTRACT

Background: Identification of cancer metastasis-relevant molecular networks is desired to provide the basis for understanding and developing intervention strategies. Here we address the role of GIPC1 in the process of MACC1-driven metastasis. MACC1 is a prognostic indicator for patient metastasis formation and metastasis-free survival. MACC1 controls gene transcription, promotes motility, invasion and proliferation of colon cancer cells in vitro, and causes tumor growth and metastasis in mice. Methods: By using yeast-two-hybrid assay, mass spectrometry, co-immunoprecipitation and peptide array we analyzed GIPC1 protein binding partners, by using the MACC1 gene promoter and chromatin immunoprecipitation and electrophoretic mobility shift assay we probed for GIPC1 as transcription factor. We employed GIPC1/MACC1-manipulated cell lines for in vitro and in vivo analyses, and we probed the GIPC1/MACC1 impact using human primary colorectal cancer (CRC) tissue. Results: We identified MACC1 and its paralogue SH3BP4 as protein binding partners of the protein GIPC1, and we also demonstrated the binding of GIPC1 as transcription factor to the MACC1 promoter (TSS to -60 bp). GIPC1 knockdown reduced endogenous, but not CMV promoter-driven MACC1 expression, and diminished MACC1-induced cell migration and invasion. GIPC1 suppression reduced tumor growth and metastasis in mice intrasplenically transplanted with MACC1-overexpressing CRC cells. In human primary CRC specimens, GIPC1 correlates with MACC1 expression and is of prognostic value for metastasis formation and metastasis-free survival. Combination of MACC1 and GIPC1 expression improved patient survival prognosis, whereas SH3BP4 expression did not show any prognostic value. Conclusions: We identified an important, dual function of GIPC1 - as protein interaction partner and as transcription factor of MACC1 - for tumor progression and cancer metastasis.

2.
J Otol ; 16(1): 27-33, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33505447

ABSTRACT

INTRODUCTION: Osteoporosis and osteopenia are progressive disorders characterized by decreased bone mass, especially in postmenopausal women. These can be associated with body pain, fractures, hearing loss and balance disorders. The present study aims to evaluate audio-vestibular function in postmenopausal patients with osteopenia or osteoporosis. METHODS: The study included 48 postmenopausal women (new subjects) diagnosed with osteoporosis (n = 23) or osteopenia (n = 25) in the age range of 50-66 years, as well as 28 normal women as controls. Audiological testing included pure tone audiometry (conventional and extended high-frequency audiometry), speech audiometry, impedance audiometry and otoacoustic emissions, including both transient evoked otoacoustic emissions (TEOAEs) and distortion product otoacoustic emissions (DPOAEs). All subjects also underwent vestibular evoked myogenic potentials testing (both ocular and cervical VEMPs). RESULTS: In the present study, hearing was worse at all frequencies in the osteoporosis group in comparison with the osteopenia and control groups, with worse speech recognition and discrimination scores and OAEs. Vestibular function was affected in 95.65% of women with osteoporosis and 76% of those with osteopenia. CONCLUSION: Osteoporosis and osteopenia are risk factors for vestibular dysfunction and hearing deficits in postmenopausal women. Thus, hearing and vestibular function should be monitored by audiological and vestibular testing periodically in these individuals.

3.
Proc Natl Acad Sci U S A ; 116(6): 2328-2337, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30659145

ABSTRACT

Mutations in the MFN2 gene encoding Mitofusin 2 lead to the development of Charcot-Marie-Tooth type 2A (CMT2A), a dominant axonal form of peripheral neuropathy. Mitofusin 2 is localized at both the outer membrane of mitochondria and the endoplasmic reticulum and is particularly enriched at specialized contact regions known as mitochondria-associated membranes (MAM). We observed that expression of MFN2R94Q induces distal axonal degeneration in the absence of overt neuronal death. The presence of mutant protein leads to reduction in endoplasmic reticulum and mitochondria contacts in CMT2A patient-derived fibroblasts, in primary neurons and in vivo, in motoneurons of a mouse model of CMT2A. These changes are concomitant with endoplasmic reticulum stress, calcium handling defects, and changes in the geometry and axonal transport of mitochondria. Importantly, pharmacological treatments reinforcing endoplasmic reticulum-mitochondria cross-talk, or reducing endoplasmic reticulum stress, restore the mitochondria morphology and prevent axonal degeneration. These results highlight defects in MAM as a cellular mechanism contributing to CMT2A pathology mediated by mutated MFN2.


Subject(s)
Charcot-Marie-Tooth Disease/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Animals , Axons/metabolism , Biological Transport , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , Endoplasmic Reticulum/ultrastructure , Female , Gait , Locomotion/genetics , Male , Mice , Mice, Transgenic , Mitochondria/ultrastructure , Motor Neurons/metabolism , Muscle Denervation , Muscle Fibers, Slow-Twitch , Signal Transduction
4.
Autophagy ; 15(6): 1051-1068, 2019 06.
Article in English | MEDLINE | ID: mdl-30669930

ABSTRACT

HSPB1 (heat shock protein family B [small] member 1) is a ubiquitously expressed molecular chaperone. Most mutations in HSPB1 cause axonal Charcot-Marie-Tooth neuropathy and/or distal hereditary motor neuropathy. In this study we show that mutations in HSPB1 lead to impairment of macroautophagic/autophagic flux. In HSPB1 knockout cells, we demonstrate that HSPB1 is necessary for autophagosome formation, which was rescued upon re-expression of HSPB1. Employing a label-free LC-MS/MS analysis on the various HSPB1 variants (wild type and mutants), we identified autophagy-specific interactors. We reveal that the wild-type HSPB1 protein binds to the autophagy receptor SQSTM1/p62 and that the PB1 domain of SQSTM1 is essential for this interaction. Mutations in HSPB1 lead to a decrease in the formation of SQSTM1/p62 bodies, and subsequent impairment of phagophore formation, suggesting a regulatory role for HSPB1 in autophagy via interaction with SQSTM1. Remarkably, autophagy deficits could also be confirmed in patient-derived motor neurons thereby indicating that the impairment of autophagy might be one of the pathomechanisms by which mutations in HSPB1 lead to peripheral neuropathy. Abbreviations: ACD: alpha-crystallin domain; ALS: amyotrophic lateral sclerosis; ATG14: autophagy related 14; BAG1/3: BCL2 associated athanogene 1/3; CMT: Charcot-Marie-Tooth; dHMN: distal hereditary motor neuropathy; GFP: green fluorescent protein; HSPA8: heat shock protein family A (Hsp70) member 8; HSPB1/6/8: heat shock protein family B (small) member 1/6/8; LIR: LC3-interacting region; LC3B: microtubule associated protein 1 light chain 3 beta; PB1: Phox and Bem1; SQSTM1: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; UBA: ubiquitin-associated; WIPI1: WD repeat domain, phosphoinositide interacting 1; WT: wild-type.


Subject(s)
Autophagosomes/metabolism , Charcot-Marie-Tooth Disease/genetics , Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Sequestosome-1 Protein/metabolism , Amyotrophic Lateral Sclerosis/genetics , Autophagosomes/ultrastructure , Autophagy/genetics , Chromatography, Liquid , HeLa Cells , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Motor Neurons/pathology , Mutation , Protein Domains , Sequestosome-1 Protein/chemistry , Sequestosome-1 Protein/genetics , Tandem Mass Spectrometry
5.
J Neurol Neurosurg Psychiatry ; 90(1): 58-67, 2019 01.
Article in English | MEDLINE | ID: mdl-30018047

ABSTRACT

Much has been achieved in terms of understanding the complex clinical and genetic heterogeneity of Charcot-Marie-Tooth neuropathy (CMT). Since the identification of mutations in the first CMT associated gene, PMP22, the technological advancement in molecular genetics and gene technology has allowed scientists to generate diverse animal models expressing monogenetic mutations that closely resemble the CMT phenotype. Additionally, one can now culture patient-derived neurons in a dish using cellular reprogramming and differentiation techniques. Nevertheless, despite the fact that finding a disease-causing mutation offers a precise diagnosis, there is no cure for CMT at present. This review will shed light on the exciting advancement in CMT disease modelling, the breakthroughs, pitfalls, current challenges for scientists and key considerations to move the field forward towards successful therapies.


Subject(s)
Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , Induced Pluripotent Stem Cells/metabolism , Animals , Charcot-Marie-Tooth Disease/genetics , Humans , Mice , Models, Biological , Mutation , Myelin Proteins/genetics , Myelin Proteins/metabolism
6.
J Neurol Neurosurg Psychiatry ; 89(8): 870-878, 2018 08.
Article in English | MEDLINE | ID: mdl-29449460

ABSTRACT

BACKGROUND: Charcot-Marie-Tooth type 2 (CMT2) neuropathy is characterised by a vast clinical and genetic heterogeneity complicating its diagnosis and therapeutic intervention. Identification of molecular signatures that are common to multiple CMT2 subtypes can aid in developing therapeutic strategies and measuring disease outcomes. METHODS: A proteomics-based approach was performed on lymphoblasts from CMT2 patients genetically diagnosed with different gene mutations to identify differentially regulated proteins. The candidate proteins were validated through real-time quantitative PCR and western blotting on lymphoblast samples of patients and controls, motor neurons differentiated from patient-derived induced pluripotent stem cells (iPSCs) and sciatic nerves of CMT2 mouse models. RESULTS: Proteomic profiling of patient lymphoblasts resulted in the identification of profilin 2 (PFN2) and guanidinoacetate methyltransferase (GAMT) as commonly downregulated proteins in different genotypes compared with healthy controls. This decrease was also observed at the transcriptional level on screening 43 CMT2 patients and 22 controls, respectively. A progressive decrease in PFN2 expression with age was observed in patients, while in healthy controls its expression increased with age. Reduced PFN2 expression was also observed in motor neurons differentiated from CMT2 patient-derived iPSCs and sciatic nerves of CMT2 mice when compared with controls. However, no change in GAMT levels was observed in motor neurons and CMT2 mouse-derived sciatic nerves. CONCLUSIONS: We unveil PFN2 and GAMT as molecular determinants of CMT2 with possible indications of the role of PFN2 in the pathogenesis and disease progression. This is the first study describing biomarkers that can boost the development of therapeutic strategies targeting a wider spectrum of CMT2 patients.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Genotype , Guanidinoacetate N-Methyltransferase/genetics , Mutation , Profilins/genetics , Adult , Aged , Axons/pathology , Charcot-Marie-Tooth Disease/pathology , Female , Humans , Male , Middle Aged , Pedigree , Phenotype , Proteomics , Young Adult
7.
Acta Neuropathol ; 135(1): 131-148, 2018 01.
Article in English | MEDLINE | ID: mdl-28780615

ABSTRACT

Mutations in the small heat shock protein B8 gene (HSPB8/HSP22) have been associated with distal hereditary motor neuropathy, Charcot-Marie-Tooth disease, and recently distal myopathy. It is so far not clear how mutant HSPB8 induces the neuronal and muscular phenotypes and if a common pathogenesis lies behind these diseases. Growing evidence points towards a role of HSPB8 in chaperone-associated autophagy, which has been shown to be a determinant for the clearance of poly-glutamine aggregates in neurodegenerative diseases but also for the maintenance of skeletal muscle myofibrils. To test this hypothesis and better dissect the pathomechanism of mutant HSPB8, we generated a new transgenic mouse model leading to the expression of the mutant protein (knock-in lines) or the loss-of-function (functional knock-out lines) of the endogenous protein Hspb8. While the homozygous knock-in mice developed motor deficits associated with degeneration of peripheral nerves and severe muscle atrophy corroborating patient data, homozygous knock-out mice had locomotor performances equivalent to those of wild-type animals. The distal skeletal muscles of the post-symptomatic homozygous knock-in displayed Z-disk disorganisation, granulofilamentous material accumulation along with Hspb8, αB-crystallin (HSPB5/CRYAB), and desmin aggregates. The presence of the aggregates correlated with reduced markers of effective autophagy. The sciatic nerve of the homozygous knock-in mice was characterized by low autophagy potential in pre-symptomatic and Hspb8 aggregates in post-symptomatic animals. On the other hand, the sciatic nerve of the homozygous knock-out mice presented a normal morphology and their distal muscle displayed accumulation of abnormal mitochondria but intact myofiber and Z-line organisation. Our data, therefore, suggest that toxic gain-of-function of mutant Hspb8 aggregates is a major contributor to the peripheral neuropathy and the myopathy. In addition, mutant Hspb8 induces impairments in autophagy that may aggravate the phenotype.


Subject(s)
Distal Myopathies/metabolism , Gain of Function Mutation , HSP20 Heat-Shock Proteins/genetics , HSP20 Heat-Shock Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Myopathies, Structural, Congenital/metabolism , Peripheral Nervous System Diseases/metabolism , Animals , Atrophy/metabolism , Atrophy/pathology , Autophagy/physiology , Disease Models, Animal , Distal Myopathies/pathology , Female , Heat-Shock Proteins , Mice, Transgenic , Mitochondria/metabolism , Mitochondria/pathology , Molecular Chaperones , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myopathies, Structural, Congenital/pathology , Sciatic Nerve/metabolism , Sciatic Nerve/pathology
8.
PLoS Biol ; 15(6): e2000784, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28570591

ABSTRACT

MACC1 (Metastasis Associated in Colon Cancer 1) is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC). However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.


Subject(s)
Acetophenones/therapeutic use , Antineoplastic Agents/therapeutic use , Benzopyrans/therapeutic use , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Transcription Factors/antagonists & inhibitors , Uncoupling Agents/therapeutic use , Acetophenones/adverse effects , Acetophenones/chemistry , Acetophenones/pharmacology , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzopyrans/adverse effects , Benzopyrans/chemistry , Benzopyrans/pharmacology , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Genes, Reporter/drug effects , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Liver Neoplasms, Experimental/prevention & control , Liver Neoplasms, Experimental/secondary , Mice, SCID , Molecular Docking Simulation , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Promoter Regions, Genetic/drug effects , Random Allocation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Small Molecule Libraries , Trans-Activators , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Burden/drug effects , Uncoupling Agents/adverse effects , Uncoupling Agents/chemistry , Uncoupling Agents/pharmacology , Xenograft Model Antitumor Assays
9.
Clin Cancer Res ; 22(11): 2812-24, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26758557

ABSTRACT

PURPOSE: We have previously identified the gene MACC1 as a strong prognostic biomarker for colorectal cancer metastasis and patient survival. Here, we report for the first time the generation of transgenic mouse models for MACC1. EXPERIMENTAL DESIGN: We generated mice with transgenic overexpression of MACC1 in the intestine driven by the villin promoter (vil-MACC1) and crossed them with Apc(Min) mice (vil-MACC1/Apc(Min)). RESULTS: vil-MACC1/Apc(Min) mice significantly increased the total number of tumors (P = 0.0056). This was particularly apparent in large tumors (≥3-mm diameter; P = 0.0024). A detailed histopathologic analysis of these lesions demonstrated that the tumors from the vil-MACC1/Apc(Min) mice had a more invasive phenotype and, consequently, showed a significantly reduced survival time than Apc(Min) mice (P = 0.03). Molecular analysis revealed an increased Wnt and pluripotency signaling in the tumors of vil-MACC1/Apc(Min) mice. Specifically, we observed a prominent upregulation of the pluripotency markers Oct4 and Nanog in these tumors compared with Apc(Min) controls. Finally, we could also validate that Oct4 and Nanog are regulated by MACC1 in vitro and strongly correlate with MACC1 levels in a cohort of 60 tumors of colorectal cancer patients (r = 0.7005 and r = 0.6808, respectively; P > 0.0001 and P > 0.0002, respectively). CONCLUSIONS: We provide proof of principle that MACC1-induced tumor progression in colorectal cancer acts, at least in part, via the newly discovered MACC1/Nanog/Oct4 axis. These findings might have important implications for the design of novel therapeutic intervention strategies to restrict tumor progression. Clin Cancer Res; 22(11); 2812-24. ©2016 AACR.


Subject(s)
Adenoma/metabolism , Colorectal Neoplasms/metabolism , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/metabolism , Transcription Factors/physiology , Adenoma/pathology , Animals , Cell Line, Tumor , Colorectal Neoplasms/pathology , Disease Progression , Female , Gene Expression , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Nanog Homeobox Protein/genetics , Neoplastic Stem Cells/metabolism , Octamer Transcription Factor-3/genetics , Pluripotent Stem Cells/metabolism , Trans-Activators , Wnt Signaling Pathway
10.
Mol Oncol ; 7(5): 929-43, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23800415

ABSTRACT

MACC1, Metastasis associated in colon cancer 1, is a newly identified prognostic biomarker for colorectal cancer metastasis and patient survival, when determined in the primary tumor or patient blood. MACC1 induces cell motility and proliferation in cell culture and metastasis in mouse models. MACC1 acts as a transcriptional regulator of the receptor tyrosine kinase gene Met via binding to its promoter. However, no information about the promoter of the MACC1 gene and its transcriptional regulation has been reported so far. Here we report the identification of the MACC1 promoter using a promoter luciferase construct that directs transcription of MACC1. To gain insights into the essential domains within this promoter region, we constructed 5' truncated deletion constructs. Our results show that the region from -426 to -18 constitutes the core promoter and harbors functional motifs for the binding of AP-1, Sp1, and C/EBP transcription factors as validated by site directed mutagenesis study. Using electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we demonstrated the physical interaction of these transcription factors to a minimal essential MACC1 core promoter sequence. Knock down of these transcription factors using RNAi strategy reduced MACC1 expression (P < 0.001), and resulted in decrease of cell migration (P < 0.01) which could be specifically rescued by ectopic overexpression of MACC1. In human colorectal tumors, expression levels of c-Jun and Sp1 correlated significantly to MACC1 (P = 0.0007 and P = 0.02, respectively). Importantly, levels of c-Jun and Sp1 also showed significant correlation to development of metachronous metastases (P = 0.01 and P = 0.001, respectively). This is the first study identifying the MACC1 promoter and its transcriptional regulation by AP-1 and Sp1. Knowledge of the transcriptional regulation of the MACC1 gene will implicate in enhanced understanding of its role in cancer progression and metastasis.


Subject(s)
Colorectal Neoplasms/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Blotting, Western , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/physiology , Chromatin Immunoprecipitation , Gene Expression Regulation, Neoplastic , Humans , Proto-Oncogene Proteins c-jun/genetics , Proto-Oncogene Proteins c-jun/metabolism , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Trans-Activators , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
11.
Eur J Med Chem ; 63: 474-83, 2013 May.
Article in English | MEDLINE | ID: mdl-23524113

ABSTRACT

Marine organisms provide several biologically active compounds that include alkaloids with high cytotoxic activity but only a few of them have so far reached clinical stage, due partly to their limited supply and complex structural features. In an attempt to develop novel anticancer compounds, we have now synthesized diaminoindoloylthiazoles (4a-c; DIT1-3) and diaminocinnamoylthiazoles (5a,b; DCT1-2) as analogs based on a topsentin scaffold and investigated the cytotoxic and apoptotic activities of these compounds in HeLa cells. The results suggest that diaminoindoloylthiazoles (DIT1-3) inhibit cell growth and among these, DIT3 is the most cytotoxic against HeLa cells (IC50 1 µM). The diaminocinnamoylthiazoles DCT1 and DCT2, which can be viewed as curcumin-diaminothiazole hybrids, also inhibited cell growth but at relatively higher concentrations with IC50 values of 60 and 30 µM, respectively. These compounds induced apoptosis through the intrinsic pathway by reducing the mitochondrial membrane potential and activating caspases, 9 and 3, but not caspase 8. Among the marine alkaloid analogs tested in this study, DIT1-3 are very effective in inducing apoptosis of HeLa cells followed by DCT2 and DCT1. The treated cells were arrested in G2/M phase followed by accumulation of the cells in the Sub G0 phase. The curcumin-diaminothiazole hybrid DCT1 had the maximum effect in downregulating TNF-induced NF-κB activation among the compounds tested in this study. Thus, we demonstrate that diaminoindoloylthiazoles and diaminocinnamoylthiazoles induce apoptosis, regulate cell cycle and NF-κB signaling and thus show promising anticancer effects that warrant further investigation.


Subject(s)
Alkaloids/chemical synthesis , Apoptosis/physiology , Imidazoles/chemical synthesis , Indoles/chemical synthesis , Thiazoles/chemical synthesis , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Caspase 9/metabolism , Cell Proliferation/drug effects , Cinnamates/chemical synthesis , Cinnamates/chemistry , Cinnamates/pharmacology , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Flow Cytometry , G2 Phase Cell Cycle Checkpoints/drug effects , HeLa Cells , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Indoles/chemistry , Indoles/pharmacology , Inhibitory Concentration 50 , Membrane Potential, Mitochondrial/drug effects , Models, Chemical , Molecular Structure , NF-kappa B/metabolism , Porifera/chemistry , Seawater/parasitology , Signal Transduction/drug effects , Thiazoles/chemistry , Thiazoles/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
12.
Curr Pharm Des ; 19(5): 841-63, 2013.
Article in English | MEDLINE | ID: mdl-22973955

ABSTRACT

Colorectal cancer is one of the most common cancers worldwide and one of the leading causes of cancer-related death in the Western world. Tumor progression towards metastasis affects a large number of patients with colorectal cancer and seriously affects their clinical outcome. Therefore, considerable effort has been made towards the development of therapeutic strategies that can decrease or prevent colorectal cancer metastasis. Standard treatment of metastatic colorectal cancer with chemotherapy has been improved in the last 10 years by the addition of new targeted agents. The currently used antibodies bevacizumab, cetuximab and panitumumab target the VEGF and EGFR signaling pathways, which are crucial for tumor progression and metastasis. These antibodies have shown relevant efficacy in both first- and second-line treatment of metastatic colorectal cancer. Additionally, other signaling pathways, including the Wnt and HGF/Met pathways, have a well-established role in colorectal cancer progression and metastasis and constitute, therefore, promising targets for new therapeutic approaches. Several new drugs targeting these pathways, including different antibodies and small-molecule tyrosine kinase inhibitors, are currently being developed and tested in clinical trials. In this review, we summarize the new developments in this field, focusing on the inhibitors that show more promising results for use in colorectal cancer patients.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Molecular Targeted Therapy , Animals , Colorectal Neoplasms/pathology , Disease Progression , Drug Design , Humans , Neoplasm Metastasis/prevention & control , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...