Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ESC Heart Fail ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981003

ABSTRACT

AIMS: Assessing the risk for HF rehospitalization is important for managing and treating patients with HF. To address this need, various risk prediction models have been developed. However, none of them used deep learning methods with real-world data. This study aimed to develop a deep learning-based prediction model for HF rehospitalization within 30, 90, and 365 days after acute HF (AHF) discharge. METHODS AND RESULTS: We analysed the data of patients admitted due to AHF between January 2014 and January 2019 in a tertiary hospital. In performing deep learning-based predictive algorithms for HF rehospitalization, we use hyperbolic tangent activation layers followed by recurrent layers with gated recurrent units. To assess the readmission prediction, we used the AUC, precision, recall, specificity, and F1 measure. We applied the Shapley value to identify which features contributed to HF readmission. Twenty-two prognostic features exhibiting statistically significant associations with HF rehospitalization were identified, consisting of 6 time-independent and 16 time-dependent features. The AUC value shows moderate discrimination for predicting readmission within 30, 90, and 365 days of follow-up (FU) (AUC:0.63, 0.74, and 0.76, respectively). The features during the FU have a relatively higher contribution to HF rehospitalization than features from other time points. CONCLUSIONS: Our deep learning-based model using real-world data could provide valid predictions of HF rehospitalization in 1 year follow-up. It can be easily utilized to guide appropriate interventions or care strategies for patients with HF. The closed monitoring and blood test in daily clinics are important for assessing the risk of HF rehospitalization.

2.
Toxics ; 9(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34941770

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) are used in various industries such as food additives, cosmetics, and biomedical applications. In this study, we evaluated lung damage over time by three types of ZnO NPs (L-serine, citrate, and pristine) following the regulation of functional groups after a single intratracheal instillation to rats. The three types of ZnO NPs showed an acute inflammatory reaction with increased LDH and inflammatory cell infiltration in the alveoli 24 h after administration. Especially in treatment with L-serine, citrate ZnO NPs showed higher acute granulocytic inflammation and total protein induction than the pristine ZnO NPs at 24 h. The acute inflammatory reaction of the lungs recovered on day 30 with bronchoalveolar fibrosis. The concentrations of IL-4, 6, TNF-α, and eotaxin in the bronchoalveolar lavage fluid (BALF) decreased over time, and the levels of these inflammation indicators are consistent with the following inflammatory cell data and acute lung inflammation by ZnO NP. This study suggests that single inhalation exposure to functionalized ZnO NPs may cause acute lung injury with granulocytic inflammation. Although it can recover 30 days after exposure, acute pulmonary inflammation in surface functionalization means that additional studies of exposure limits are needed to protect the workers that produce it.

3.
J Exp Bot ; 71(12): 3417-3427, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32219321

ABSTRACT

Phytoene synthase 1 (PSY1) and capsanthin-capsorubin synthase (CCS) are two major genes responsible for fruit color variation in pepper (Capsicum spp.). However, the role of PSY2 remains unknown. We used a systemic approach to examine the genetic factors responsible for the yellow fruit color of C. annuum 'MicroPep Yellow' (MY) and to determine the role of PSY2 in fruit color. We detected complete deletion of PSY1 and a retrotransposon insertion in CCS. Despite the loss of PSY1 and CCS function, both MY and mutant F2 plants from a cross between MY and the 'MicroPep Red' (MR) accumulated basal levels of carotenoids, indicating that other PSY genes may complement the loss of PSY1. qRT-PCR analysis indicated that PSY2 was constitutively expressed in both MR and MY fruits, and a color complementation assay using Escherichia coli revealed that PSY2 was capable of biosynthesizing a carotenoid. Virus-induced gene silencing of PSY2 in MY resulted in white fruits. These findings indicate that PSY2 can compensate for the absence of PSY1 in pepper fruit, resulting in the yellow color of MY fruits.


Subject(s)
Capsicum , Capsicum/genetics , Carotenoids , Fruit/genetics , Plant Proteins/genetics
4.
Plant Biotechnol J ; 17(6): 1081-1093, 2019 06.
Article in English | MEDLINE | ID: mdl-30467964

ABSTRACT

The diverse colours of mature pepper (Capsicum spp.) fruit result from the accumulation of different carotenoids. The carotenoid biosynthetic pathway has been well elucidated in Solanaceous plants, and analysis of candidate genes involved in this process has revealed variations in carotenoid biosynthetic genes in Capsicum spp. However, the allelic variations revealed by previous studies could not fully explain the variation in fruit colour in Capsicum spp. due to technical difficulties in detecting allelic variation in multiple candidate genes in numerous samples. In this study, we uncovered allelic variations in six carotenoid biosynthetic genes, including phytoene synthase (PSY1, PSY2), lycopene ß-cyclase, ß-carotene hydroxylase, zeaxanthin epoxidase and capsanthin-capsorubin synthase (CCS) genes, in 94 pepper accessions by single-molecule real-time (SMRT) sequencing. To investigate the relationship between allelic variations in the candidate genes and differences in fruit colour, we performed ultra-performance liquid chromatography analysis using 43 accessions representing each allelic variation. Different combinations of dysfunctional mutations in PSY1 and CCS could explain variation in the compositions and levels of carotenoids in the accessions examined in this study. Our results demonstrate that SMRT sequencing technology can be used to rapidly identify allelic variation in target genes in various germplasms. The newly identified allelic variants will be useful for pepper breeding and for further analysis of carotenoid biosynthesis pathways.


Subject(s)
Alleles , Capsicum , Carotenoids , Genetic Variation , Pigments, Biological , Capsicum/genetics , Capsicum/metabolism , Carotenoids/metabolism , Fruit/genetics , Pigments, Biological/genetics , Sequence Analysis, DNA
5.
PLoS One ; 12(7): e0181634, 2017.
Article in English | MEDLINE | ID: mdl-28723962

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) have many biomedical applications such as chemotherapy agents, vaccine adjuvants, and biosensors but its hemocompatibility is still poorly understood, especially in the event of direct contact of NPs with blood components. Here, we investigated the impact of size and surface functional groups on the platelet homeostasis. ZnO NPs were synthesized in two different sizes (20 and 100 nm) and with three different functional surface groups (pristine, citrate, and L-serine). ZnO NPs were incubated with plasma collected from healthy rats to evaluate the coagulation time, kinetics of thrombin generation, and profile of levels of coagulation factors in the supernatant and coronated onto the ZnO NPs. Measurements of plasma coagulation time showed that all types of ZnO NPs prolonged both active partial thromboplastin time and prothrombin time in a dose-dependent manner but there was no size- or surface functionalization-specific pattern. The kinetics data of thrombin generation showed that ZnO NPs reduced the thrombin generation potential with functionalization-specificity in the order of pristine > citrate > L-serine but there was no size-specificity. The profile of levels of coagulation factors in the supernatant and coronated onto the ZnO NPs after incubation of platelet-poor plasma with ZnO NPs showed that ZnO NPs reduced the levels of coagulation factors in the supernatant with functionalization-specificity. Interestingly, the pattern of coagulation factors in the supernatant was consistent with the levels of coagulation factors adsorbed onto the NPs, which might imply that ZnO NPs simply adsorb coagulation factors rather than stimulating these factors. The reduced levels of coagulation factors in the supernatant were consistent with the delayed coagulation time and reduced potential for thrombin generation, which imply that the adsorbed coagulation factors are not functional.


Subject(s)
Blood Coagulation/drug effects , Blood Platelets/drug effects , Metal Nanoparticles/administration & dosage , Thrombin/metabolism , Zinc Oxide/adverse effects , Animals , Dose-Response Relationship, Drug , Particle Size , Prothrombin Time , Rats
6.
BMC Genet ; 17(1): 142, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27842492

ABSTRACT

BACKGROUND: Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. RESULTS: To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (HE = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (HE = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection 'CC240' with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher genetic diversity (I = 0.95) and genetic evenness (J' = 0.80), and represented a wider range of phenotypic variation (MD = 9.45 %, CR = 98.40 %). CONCLUSIONS: A total of 240 accessions were selected from 3,821 Capsicum accessions based on transcriptome-based 48 SNP markers with genome-wide distribution and 32 traits using a systematic approach. This core collection will be a primary resource for pepper breeders and researchers for further genetic association and functional analyses.


Subject(s)
Capsicum/genetics , Genetic Variation , Breeding , Genetic Markers/genetics , Genomics , Phylogeny , Seeds/genetics
7.
J Gen Appl Microbiol ; 55(1): 27-34, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19282630

ABSTRACT

The biosorptive capacity of Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri was investigated based on Langmuir and Freundlich isotherms and biosorption kinetics were analyzed using first order kinetic with different initial metal concentrations. Biosorptive capacity for Cd(II) and Cu(II) decreased with an increment of metal concentration, reaching 43.5 and 36.2 mg/g at the initial concentration of 300 mg/L. Biosorption capacity for both metal ions was increased with increasing pH. The optimum pH for biosorption rate of Cu(II) and Cd(II) was pH 5; above pH 5.0 the metal cations came to be precipitated. The experimental data showed a better fit with the Langmuir model over the Freundlich model for both metal ions throughout the range of initial concentrations. The maximum sorptive capacity (q max) obtained from the Langmuir equation for Cd(II) and Cu(II) were 47.86 (r(2)=0.99) and 33.16 (r(2)=0.99), respectively. The bacterial cells have more affinity to adsorb cadmium than copper. The first order kinetic was well fitted to the experimental data for initial concentrations from 30 to 100 mg/L during reaction times of 250 min. These results suggest that biosorption of Cu(II) and Cd(II) by lyophilized cells of P. stutzeri is a potential metal removal strategy.


Subject(s)
Cadmium/pharmacokinetics , Copper/pharmacokinetics , Pseudomonas stutzeri/metabolism , Water Pollutants, Chemical/pharmacokinetics , Water Purification/methods , Adsorption , Biodegradation, Environmental , Freeze Drying , Hydrogen-Ion Concentration , Industrial Microbiology/methods , Kinetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...