Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Otol Neurotol ; 45(5): 564-571, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38728560

ABSTRACT

OBJECTIVE: To investigate the safety and feasibility of precise delivery of a long-acting gel formulation containing 6% dexamethasone (SPT-2101) to the round window membrane for the treatment of Menière's disease. STUDY DESIGN: Prospective, unblinded, cohort study. SETTING: Tertiary care neurotology clinic. PATIENTS: Adults 18 to 85 years with a diagnosis of unilateral definite Menière's disease per Barany society criteria. INTERVENTIONS: A single injection of a long-acting gel formulation under direct visualization into the round window niche. MAIN OUTCOME MEASURES: Procedure success rate, adverse events, and vertigo control. Vertigo control was measured with definitive vertigo days (DVDs), defined as any day with a vertigo attack lasting 20 minutes or longer. RESULTS: Ten subjects with unilateral Menière's disease were enrolled. Precise placement of SPT-2101 at the round window was achieved in all subjects with in-office microendoscopy. Adverse events included one tympanic membrane perforation, which healed spontaneously after the study, and two instances of otitis media, which resolved with antibiotics. The average number of DVDs was 7.6 during the baseline month, decreasing to 3.3 by month 1, 3.7 by month 2, and 1.9 by month 3. Seventy percent of subjects had zero DVDs during the third month after treatment. CONCLUSIONS: SPT-2101 delivery to the round window is safe and feasible, and controlled trials are warranted to formally assess efficacy.


Subject(s)
Dexamethasone , Meniere Disease , Round Window, Ear , Humans , Meniere Disease/drug therapy , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Middle Aged , Male , Female , Aged , Adult , Treatment Outcome , Prospective Studies , Aged, 80 and over , Delayed-Action Preparations , Cohort Studies , Vertigo/drug therapy , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Gels , Young Adult
2.
ACS Biomater Sci Eng ; 7(1): 196-206, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33338381

ABSTRACT

The fate of nanocarrier materials at the cellular level constitutes a critical checkpoint in the development of effective nanomedicines, determining whether tissue level accumulation results in therapeutic benefit. The cytotoxicity and cell internalization of ∼18 nm 3-helix micelle (3HM) loaded with doxorubicin (DOX) were analyzed in patient-derived glioblastoma (GBM) cells in vitro. The half-maximal inhibitory concentration (IC50) of 3HM-DOX increased to 6.2 µg/mL from <0.5 µg/mL for free DOX in patient-derived GBM6 cells, to 15.0 µg/mL from 6.5 µg/mL in U87MG cells, and to 21.5 µg/mL from ∼0.5 µg/mL in LN229 cells. Modeling analysis of previous 3HM biodistribution results predicts that these cytotoxic concentrations are achievable with intravenous injection in rodent GBM models. 3HM-DOX formulations were internalized intact and underwent intracellular trafficking distinct from free DOX. 3HM was quantified to have an internalization half-life of 12.6 h in GBM6 cells, significantly longer than that reported for some liposome and polymer systems. 3HM was found to traffic through active endocytic processes, with clathrin-mediated endocytosis being the most involved of the pathways studied. Inhibition studies suggest substantial involvement of receptor recognition in 3HM uptake. As the 3HM surface is PEG-ylated with no targeting functionalities, protein corona-cell surface interactions, such as the apolipoprotein-low-density lipoprotein receptor, are expected to initiate internalization. The present work gives insights into the cytotoxicity, pharmacodynamics, and cellular interactions of 3HM and 3HM-DOX relevant for ongoing preclinical studies. This work also contributes to efforts to develop predictive mathematical models tracking the accumulation and biodistribution kinetics at a systemic level.


Subject(s)
Antineoplastic Agents , Micelles , Biological Transport , Doxorubicin , Humans , Tissue Distribution
3.
J Control Release ; 329: 538-551, 2021 01 10.
Article in English | MEDLINE | ID: mdl-32971202

ABSTRACT

Biological constraints in diseased tissues have motivated the need for small nanocarriers (10-30 nm) to achieve sufficient vascular extravasation and pervasive tumor penetration. This particle size limit is only an order of magnitude larger than small molecules, such that cargo loading is better described by co-assembly processes rather than simple encapsulation. Understanding the structural, kinetic, and energetic contributions of carrier-cargo co-assembly is thus critical to achieve molecular-level control towards predictable in vivo behavior. These interconnected set of properties were systematically examined using sub-20 nm self-assembled nanocarriers known as three-helix micelles (3HM). Both hydrophobicity and the "geometric packing parameter" dictate small molecule compatibility with 3HM's alkyl tail core. Planar obelisk-like apomorphine and doxorubicin (DOX) molecules intercalated well within the 3HM core and near the core-shell interface, forming an integral component to the co-assembly, as corroborated by small-angle X-ray and neutron-scattering structural studies. DOX promoted crystalline alkyl tail ordering, which significantly increased (+63%) the activation energy of 3HM subunit exchange. Subsequently, 3HM-DOX displayed slow-release kinetics (t1/2 = 40 h) at physiological temperatures, with ~50× greater cargo preference for the micelle core as described by two drug partitioning coefficients (micellar core/shell Kp1 ~ 24, and shell/bulk solvent Kp2 ~ 2). The geometric and energetic insights between nanocarrier and their small molecule cargos developed here will aid in broader efforts to deconvolute the interconnected properties of carrier-drug co-assemblies. Adding this knowledge to pharmacological and immunological explorations will expand our understanding of nanomedicine behavior throughout all the physical and in vivo processes they are intended to encounter.


Subject(s)
Drug Carriers , Micelles , Doxorubicin , Hydrophobic and Hydrophilic Interactions , Kinetics
4.
ACS Biomater Sci Eng ; 6(5): 2879-2892, 2020 05 11.
Article in English | MEDLINE | ID: mdl-33463250

ABSTRACT

Understanding the complex interplay of factors affecting nanoparticle accumulation in solid tumors is a challenge that must be surmounted to develop effective cancer nanomedicine. Among other unique microenvironment properties, tumor vascular permeability is an important feature of leaky tumor vessels which enables nanoparticles to extravasate. However, permeability has thus far been measured by intravital microscopy on optical window tumors, which has many limitations of its own. Additionally, mathematical models of particle tumor transport are often too complicated to be accessible to most researchers. Here, we present a more simplified and accessible mathematical model based on diffusive flux, which uses particle tumor accumulation and plasma pharmacokinetics to yield effective permeability, Peff. This model, called diffusive flux modeling (DFM), allows effects from multiple parameters to be decoupled and is also the first demonstration, to the best our knowledge, of extracting Peff values from bulk biodistribution results (e.g., routine positron emission tomography studies). The DFM equation was used to explain in vivo results of sub-20 nm nanocarriers called three-helix-micelles (3HM), particularly 3HM's selective accumulation in different tumor models. When DFM was applied to multiple published biodistribution data, a semiquantitative comparison of various tumor models, particle size, and active targeting strategies could be made. The analysis clearly pointed out the importance of balancing multiple characteristics of nanoparticles to ensure successful treatment outcome and highlights the usefulness of this simple model for initial particle design, selection, and subsequent optimization.


Subject(s)
Nanoparticles , Neoplasms , Capillary Permeability , Humans , Permeability , Tissue Distribution , Tomography, X-Ray Computed , Tumor Microenvironment
5.
Biomacromolecules ; 18(11): 3572-3580, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-28817259

ABSTRACT

Ligand-functionalized, multivalent nanoparticles have been extensively studied for biomedical applications from imaging agents to drug delivery vehicles. However, the ligand cluster size is usually heterogeneous and the local valency is ill-defined. Here, we present a mixed micelle platform hierarchically self-assembled from a mixture of two amphiphilic 3-helix and 4-helix peptide-polyethylene glycol (PEG)-lipid hybrid conjugates. We demonstrate that the local multivalent ligand cluster size on the micelle surface can be controlled based on the coiled-coil oligomeric state. The oligomeric states of mixed peptide bundles were found to be in their individual native states. Similarly, mixed micelles indicate the orthogonal self-association of coiled-coil amphiphiles. Using differential scanning calorimetry, fluorescence recovery spectroscopy, and coarse-grained molecular dynamics simulation, we studied the distribution of coiled-coil bundles within the mixed micelles and observed migration of coiled-coils into nanodomains within the sub-20 nm mixed micelle. This report provides important insights into the assembly and formation of nanophase-separated micelles with precise control over the local multivalent state of ligands on the micelle surface.


Subject(s)
Lipids/chemistry , Nanoparticles/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry , Drug Delivery Systems , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Micelles , Polymers/chemistry
6.
Biomacromolecules ; 18(3): 976-984, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28165730

ABSTRACT

A subtle but highly pertinent factor in the self-assembly of hierarchical nanostructures is the kinetic landscape. Self-assembly of a hierarchical multicomponent system requires the intricate balance of noncovalent interactions on a similar energy scale that can result in several self-assembly processes occurring at different time scales. We seek to understand the hierarchical assemblies within an amphiphilic 3-helix peptide-PEG-lipid conjugate system in the formation process of highly stable 3-helix micelles (3HMs). 3HM self-assembles through multiple parallel processes: helix folding, coiled-coil formation, micelle assembly, and packing of alkyl chains. Our results show that the kinetic pathway of 3HM formation is mainly governed by two confounding factors: lateral diffusion of amphiphiles to form coiled-coils within the micelle corona and packing of alkyl tails within the hydrophobic micelle core. 3HM has exhibited highly desirable attributes as a drug delivery nanocarrier; understanding the role of individual components in the kinetic pathway of 3HM formation will allow us to exert better control over the kinetic pathway, as well as to enhance future design and eventually manipulate the kinetic intermediates for potential drug delivery applications.


Subject(s)
Micelles , Peptides/chemistry , Polymers/chemistry , Circular Dichroism , Doxorubicin/chemistry , Drug Carriers/chemistry , Drug Compounding , Fluorescein/chemistry , Hydrophobic and Hydrophilic Interactions , Nanostructures/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...