Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(10): e0240352, 2020.
Article in English | MEDLINE | ID: mdl-33031474

ABSTRACT

Fixation materials used in the surgical treatment of subcondylar fractures contribute to successful clinical outcomes. In this study, we simulated the mechanical properties of four fixation materials [titanium (Ti), magnesium alloy (Mg alloy), poly-L-lactic acid (PLLA), and hydroxyapatite/poly-L-lactide (HA-PLLA)] in a finite-element analysis model of subcondylar fracture. Two four-hole plates were fixed on the anterior and posterior surfaces of the subcondyle of the mandible. In the simulation model of a subcondylar fracture, we evaluated the stress distribution and mechanical deformation of fixation materials. The stress distribution conspicuously appeared on the condylar neck of the non-fractured side and the center of the anterior plate for all materials. More stress distribution to the biologic component appeared with HA-PLLA than with Ti or Mg alloy, but its effects were less prominent than that of PLLA. The largest deformation was observed with PLLA, followed by HA-PLLA, Mg alloy, and Ti. The results of the present study imply the clinical potential of the HA-PLLA fixation material for open reduction of subcondylar fractures.


Subject(s)
Bone Screws , Finite Element Analysis , Mandibular Fractures/surgery , Absorbable Implants , Alloys/chemistry , Durapatite/chemistry , Elastic Modulus , Fracture Fixation, Internal/methods , Humans , Polyesters/chemistry , Tensile Strength , Titanium/chemistry
2.
Materials (Basel) ; 13(1)2020 Jan 04.
Article in English | MEDLINE | ID: mdl-31947998

ABSTRACT

Recently, a hydroxyapatite particle/poly-L-lactide (HA-PLLA) composite device was introduced as an alternative to previous fixation systems. In this study, we used finite element analysis to simulate peak von Mises stress (PVMS) and deformation of bone plates and screws with the following four materials-Ti, Mg alloy, PLLA, and HA-PLLA-at a unilateral mandibular fracture. A three-dimensional virtual mandibular model was constructed, and the fracture surface was designed to run from the left mandibular angle. Masticatory loading was applied on the right first molars. Stress was concentrated at the upper part and the neck of the screw. The largest PVMS was observed for Ti; that was followed by Mg alloy, HA-PLLA, and PLLA. The largest deformation was observed for PLLA; next was HA-PLLA, then Mg alloy, and finally Ti. We could rank relative superiority in terms of mechanical properties. The HA-PLLA screw and mini-plate deformed less than 0.15 mm until 300 N. Thus, we can expect good bone healing with usual masticatory loading six weeks postoperatively. HA-PLLA is more frequently indicated clinically than PLLA owing to less deformation. If the quality of HA-PLLA fixation is improved, it could be widely utilized in facial bone trauma or craniofacial surgery.

SELECTION OF CITATIONS
SEARCH DETAIL
...