Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Molecules ; 28(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37836627

ABSTRACT

This article reports on the synthesis of materials containing both a fluoroalkyl group and a diazonaphthoquinone (DNQ) moiety as well as the fabrication of negative- and positive-tone stencil patterns. Additionally, the photoreaction mechanism that contributes to the pattern formation process is discussed, and the application of these materials is explored in the pixel-formation process in organic light-emitting diode (OLED) displays. Fluoroalkylated diazonaphthoquinone (RF2D1) was synthesized using chemically binding a DNQ unit, which can be converted into carboxylic acid derivatives having stronger polarity, with two fluorinated alkyl chains. The purified compound is found to be soluble in a nonpolar fluorous solvent and can be uniformly coated as a thin film. When the thin film of RF2D1 is exposed to 365 nm UV light, its solubility in a fluorous solvent decreases due to the Wolff rearrangement and subsequent hydrolysis of a ketene moiety. In contrast, when a mixture of RF2D1 and a hydrophobic, fluorinated copolymer is tested for the patterning process, the copolymer delays the conversion of the ketene intermediate to carboxylic acid, resulting in the dissolution of the exposed areas in the fluorous solvent. Finally, the applicability of these materials in micropatterning is demonstrated by adopting them in the orthogonal photolithography process to create pixels of OLEDs.

2.
R Soc Open Sci ; 9(3): 211660, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35308630

ABSTRACT

Acid spills cause large-scale environmental damage and casualties. To respond to such incidents, a sensor capable of detecting acid leaks is required. Cellulose is a useful substrate material for the fast detection of acid leaks because it has high hydrophilicity and porosity. On the other hand, methods of manufacturing cellulose-based sensors are still complicated or time-consuming. Thus, in this study, a simple and rapid synthesis method for a cellulose-based pH sensor was proposed. The functionalization of α-cellulose was achieved via chloroacetyl chloride, and Congo red was covalently immobilized to the functionalized cellulose for detecting strong acids. The manufacturing process was composed of two steps as above and finished within 8 h. The developed sensor exhibited absorbance changes in the pH range of 0.2 to 3.0, and response time was shorter than 1 s. A prototype system using this sensor was manufactured and tested, and it detected acid leaks easily and quickly.

3.
Chemistry ; 26(70): 16793-16801, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32779254

ABSTRACT

Doubly boron-doped thermally activated delayed fluorescence (TADF) emitters based on a 9,10-diboraanthracene (DBA) acceptor decorated with ortho-donor groups (Cz2oDBA, 2; BuCz2oDBA, 3; DMAC2oDBA, 4) are prepared to realize high-efficiency green-to-red organic light-emitting diodes (OLEDs). X-ray diffraction analyses of 2 and 4 reveal the symmetrical and highly twisted ortho-donor-acceptor-donor (D-A-D) structure of the emitters. The twisted conformation leads to a very small energy splitting (ΔEST <0.08 eV) between the excited singlet and triplet states that gives rise to strong TADF, as supported by theoretical studies. Depending on the strength of the donor moieties, the emission color is fine-tuned in the visible region from green (2) to yellow (3) to red (4). Carbazole-containing 2 and 3 exhibit high photoluminescence quantum yields (PLQYs) approaching 100 %, whereas DMAC-substituted 4 is moderately emissive (PLQY=44 %) in a doped host film. Highly efficient green-to-red TADF-OLEDs are realized with the proposed ortho-D-A-D compounds as emitters. The green and yellow OLEDs incorporating Cz2oDBA (2) and BuCz2oDBA (3) emitters exhibit high external quantum efficiencies (EQEs) of 26.6 % and 21.6 %, respectively. In particular, the green device shows an excellent power efficiency above 100 lm W-1 . A red OLED fabricated with a DMAC2oDBA (4) emitter exhibits a maximum EQE of 10.1 % with an electroluminescence peak at 615 nm.

4.
Micromachines (Basel) ; 11(7)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629931

ABSTRACT

Nowadays, the display industry is endeavoring to develop technology to provide large-area organic light-emitting diode (OLED) display panels with 8K or higher resolution. Although the selective deposition of organic molecules through shadow masks has proven to be the method of choice for mobile panels, it may not be so when independently defined high-resolution pixels are to be manufactured on a large substrate. This technical challenge motivated us to adopt the well-established photolithographic protocol to the OLED pixel patterning. In this study, we demonstrate the two-color OLED pixels integrated on a single substrate using a negative-tone highly fluorinated photoresist (PR) and fluorous solvents. Preliminary experiments were performed to examine the probable damaging effects of the developing and stripping processes upon a hole-transporting layer (HTL). No significant deterioration in the efficiency of the develop-processed device was observed. Efficiency of the device after lift-off was up to 72% relative to that of the reference device with no significant change in operating voltage. The procedure was repeated to successfully obtain two-color pixel arrays. Furthermore, the patterning of 15 µm green pixels was accomplished. It is expected that photolithography can provide a useful tool for the production of high-resolution large OLED displays in the near future.

5.
RSC Adv ; 9(28): 16252-16257, 2019 May 20.
Article in English | MEDLINE | ID: mdl-35521376

ABSTRACT

High power efficiency (PE) and stability of quantum dot (QD) light-emitting diodes (QLEDs) are important factors for practical use in various displays. However, hybrid QLEDs consisting of an organic hole transport layer (HTL) and an inorganic electron transport layer (ETL) sometimes have poor stability due to the low thermal stability of the organic HTL. To solve the problem, here, we report enhanced efficiency, lifetime, and temperature stability in inverted and hybrid structured QLEDs by adopting a MoO3-doped HTL. Also, to improve the electron-hole charge carrier balance, a thin insulating interlayer was used between QDs and the ETL. As a result, the QLED with the p-doped HTL exhibited the increased PE by ∼28% and longer lifetime compared to the pristine QLEDs. In addition, the QLED showed stable operation at the high temperature up to 400 K, whereas the control device failed to operate at 375 K. We systematically investigated the effect of the MoO3-doping on the performance and thermal stability of the QLEDs. We believe that QLEDs with the p-doped HTL can be used for further QLED researches to simultaneously improve the efficiency, lifetime, and high temperature stability, which are highly required for their use in automotive and outdoor displays.

6.
Molecules ; 23(4)2018 Apr 08.
Article in English | MEDLINE | ID: mdl-29642481

ABSTRACT

Solution-processed organic light-emitting diodes (OLEDs) are attractive due to their low-cost, large area displays, and lighting features. Small molecules as well as polymers can be used as host materials within the solution-processed emitting layer. Herein, we report two 3,3'-bicarbazole-based host small molecules, which possess a structural isomer relationship. 9,9'-Di-4-n-butylphenyl-9H,9'H-3,3'-bicarbazole (BCz-nBuPh) and 9,9'-di-4-t-butylphenyl-9H,9'H-3,3'-bicarbazole (BCz-tBuPh) exhibited similar optical properties within solutions but different photoluminescence within films. A solution-processed green phosphorescent OLED with the BCz-tBuPh host exhibited a high maximum current efficiency and power efficiency of 43.1 cd/A and 40.0 lm/W, respectively, compared to the device with the BCz-nBuPh host.


Subject(s)
Carbazoles/chemistry , Small Molecule Libraries/chemical synthesis , Fluorescence , Molecular Structure , Small Molecule Libraries/chemistry
7.
Nanoscale Res Lett ; 11(1): 242, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27142880

ABSTRACT

For the diagnosis and prevention of diseases, a range of strategies for the detection of pathogens have been developed. In this study, we synthesized the rolling circle amplification (RCA)-based biosensor that enables detection of pathogen DNA in two analytical modes. Only in the presence of the target DNA, the template DNA can be continuously polymerized by simply carrying out RCA, which gives rise to a change of surface structure of Au electrodes and the gap between the electrodes. Electrical signal was generated after introducing hydrogen tetrachloroaurate (HAuCl4) to the DNA-coated biosensor for the improvement of the conductivity of DNA, which indicates that the presence of the pathogen DNA can be detected in an electrical approach. Furthermore, the existence of the target DNA was readily detected by the naked eyes through change in colors of the electrodes from bright yellow to orange-red after RCA reaction. The RCA-based biosensor offers a new platform for monitoring of pathogenic DNA with two different detection modes in one system.

8.
J Nanosci Nanotechnol ; 14(8): 6422-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25936129

ABSTRACT

We have synthesized an anthracene-based conjugated polymer, poly[(9,10-bis(oct-1-ynyl)anthracene)-alt-(5,6-bis(octyloxy)-4,7-bis(thiophen-2-yl)benzo-[c][1,2,5]-thiadiazole)] (PANTBT), for application in organic photovoltaic devices. It exhibited a number average molecular weight of 14,300 g/mol and was fairly soluble in chlorinated organic solvents due to flexible octynyl- and octyloxy side chains on the anthracene and benzothiadiazole moieties. PANTBT showed absorption covering 300-660 nm. Through the bond alternation between the electron-sufficient anthracene (and thiophene) and electron-deficient benzothiadiazole units, a band gap of PANTBT was decreased to 1.89 eV, showing a deep HOMO level of -5.31 eV. As a result, PANTBT exhibited promising photovoltaic properties with a PCE value of 1.90% (VOC = 0.77 V, JSC = -6.50 mA/cm2, FF = 0.38) upon blending with PC71, BM under AM 1.5G.


Subject(s)
Anthracenes/chemistry , Polymers/chemistry , Magnetic Resonance Spectroscopy , Photochemistry , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet
9.
ACS Appl Mater Interfaces ; 5(15): 7025-32, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23845125

ABSTRACT

Leakage currents through the gate dielectric of thin film transistors remain a roadblock to the fabrication of organic field-effect transistors (OFETs) on ultrathin dielectrics. We report the first investigation of a self-assembled monolayer (SAM) dipole as an electrostatic barrier to reduce leakage currents in n-channel OFETs fabricated on a minimal, leaky ∼10 nm SiO2 dielectric on highly doped Si. The electric field associated with 1H,1H,2H,2H-perfluoro-octyltriethoxysilane (FOTS) and octyltriethoxysilane (OTS) dipolar chains affixed to the oxide surface of n-Si gave an order of magnitude decrease in gate leakage current and subthreshold leakage and a two order-of-magnitude increase in ON/OFF ratio for a naphthalenetetracarboxylic diimide (NTCDI) transistor. Identically fabricated devices on p-Si showed similarly reduced leakage and improved performance for oxides treated with the larger dipole FOTS monolayer, while OTS devices showed poorer transfer characteristics than those on bare oxide. Comparison of OFETs on both substrates revealed that relative device performance from OTS and FOTS treatments was dictated primarily by the organosilane chain and not the underlying siloxane-substrate bond. This conclusion is supported by the similar threshold voltages (VT) extrapolated for SAM-treated devices, which display positive relative VT shifts for FOTS on either substrate but opposite VT shifts for OTS treatment on n-Si and p-Si. Our results highlight the potential of dipolar SAMs as performance-enhancing layers for marginal quality dielectrics, broadening the material spectrum for low power, ultrathin organic electronics.

10.
ACS Nano ; 5(4): 2723-34, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21351783

ABSTRACT

We designed a new naphthalenetetracarboxylic diimide (NTCDI) semiconductor molecule with long fluoroalkylbenzyl side chains. The side chains, 1.2 nm long, not only aid in self-assembly and kinetically stabilize injected electrons but also act as part of the gate dielectric in field-effect transistors. On Si substrates coated only with the 2 nm thick native oxide, NTCDI semiconductor films were deposited with thicknesses from 17 to 120 nm. Top contact Au electrodes were deposited as sources and drains. The devices showed good transistor characteristics in air with 0.1-1 µA of drain current at 0.5 V of V(G) and V(DS) and W/L of 10-20, even though channel width (250 µm) is over 1000 times the distance (20 nm) between gate and drain electrodes. The extracted capacitance-times-mobility product, an expression of the sheet transconductance, can exceed 100 nS V(-1), 2 orders of magnitude higher than typical organic transistors. The vertical low-frequency capacitance with gate voltage applied in the accumulation regime reached as high as 650 nF/cm(2), matching the harmonic sum of capacitances of the native oxide and one side chain and indicating that some gate-induced carriers in such devices are distributed among all of the NTCDI core layers, although the preponderance of the carriers are still near the gate electrode. Besides demonstrating and analyzing thickness-dependent NTCDI-based transistor behavior, we also showed <1 V detection of dinitrotoluene vapor by such transistors.

11.
Adv Funct Mater ; 21(22): 4314-4319, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-23754969

ABSTRACT

Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards 'intelligent sensors' that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations.

12.
Proc Natl Acad Sci U S A ; 107(9): 3972-6, 2010 Mar 02.
Article in English | MEDLINE | ID: mdl-20160116

ABSTRACT

The operation of organic diodes in solar cells and light-emitting displays strongly depends on the properties of the interfaces between hole- and electron-carrying organic semiconductors. Such interfaces are difficult to characterize, as they are usually buried under the surface or exist as an irregular "bulk heterojunction." Using a unique fluorinated barrier layer-based lithographic technique, we fabricated a lateral organic p-n junction, allowing the first observation of the potential at an organic p-n interface simultaneously with the charge transport measurements. We find that the diode characteristics of the device (current output and rectification ratio) are consistent with the changes in the surface potentials near the junction, and the current-voltage curves and junction potentials are strongly and self-consistently modulated by a third, gate electrode. The generality of our technique makes this an attractive method to investigate the physics of organic semiconductor junctions. The lithographic technique is applicable to a wide variety of soft material patterns. The observation of built-in potentials makes an important connection between organic junctions and textbook descriptions of inorganic devices. Finally, these kinds of potentials may prove to be controlling factors in charge separation efficiency in organic photovoltaics.

13.
J Am Chem Soc ; 132(15): 5394-404, 2010 Apr 21.
Article in English | MEDLINE | ID: mdl-20102195

ABSTRACT

Four ladder-type oligo-p-phenylene containing donor-acceptor copolymers were designed, synthesized, and characterized. The ladder-type oligo-p-phenylene was used as an electron donor unit in these copolymers to provide a deeper highest occupied molecular orbital (HOMO) level for obtaining polymer solar cells with a higher open-circuit voltage, while 4,7-dithien-2-yl-2,1,3-benzothiadiazole or 5,8-dithien-2-yl-2,3-diphenylquinoxaline was chosen as an electron acceptor unit to tune the electronic band gaps of the polymers for a better light harvesting ability. These copolymers exhibit field-effect mobilities as high as 0.011 cm(2)/(V s). Compared to fluorene containing copolymers with the same acceptor unit, these ladder-type oligo-p-phenylene containing copolymers have enhanced and bathochromically shifted absorption bands and much better solubility in organic solvents. Photovoltaic applications of these polymers as light-harvesting and hole-conducting materials are investigated in conjunction with [6,6]-phenyl-C61-butyric acid methyl ester (PC(61)BM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC(71)BM). Without extensive optimization work, a power conversion efficiency (PCE) of 3.7% and a high open-circuit voltage of 1.06 V are obtained under simulated solar light AM 1.5 G (100 mW/cm(2)) from a solar cell with an active layer containing 20 wt % ladder-type tetra-p-phenylene containing copolymer (P3FTBT6) and 80 wt % PC(61)BM. Moreover, a high PCE of 4.5% was also achieved from a solar cell with an active layer containing 20 wt % P3FTBT6 and 80 wt % PC(71)BM.

14.
J Am Chem Soc ; 131(5): 1692-705, 2009 Feb 11.
Article in English | MEDLINE | ID: mdl-19146451

ABSTRACT

A new series of heterocyclic oligomers based on the 1,3,4-oxadiazole ring were synthesized. Other electron-deficient cores (fluorenone and fumaronitrile) were introduced to investigate the oligomers as n-channel materials. The physical properties, thin film morphologies, and field-effect transistor characteristics of the oligomers were evaluated. Thin films were deposited at different substrate temperatures and on variously coated Si/SiO(2) for device optimization. Contrary to our expectations, the thin film devices of 4 revealed p-channel behavior, and the average hole mobility was 0.14 cm(2) V(-1) s(-1) (maximum value 0.18 cm(2) V(-1) s(-1)). Compound 11 is the first example of an oxadiazole-containing organic semiconductor (OSC) oligomer in an n-channel organic field-effect transistor (OFET) and shows moderate mobilities. Non-oxadiazole-containing oligomers 9 and 12 showed n-channel OFET behavior on hexamethyldisilazane-treated and Cytop spin-coated SiO(2) in vacuum. These are the first fluorenone- and fumaronitrile-based n-OSCs demonstrated in transistors. However, oxadiazole-core materials 14 and 16 were inactive in transistor devices.


Subject(s)
Oxadiazoles/chemistry , Electrons , Fluorenes/chemistry , Fumarates/chemistry , Oxadiazoles/chemical synthesis , Semiconductors , Silicon Dioxide/chemistry
15.
ACS Appl Mater Interfaces ; 1(8): 1763-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-20355793

ABSTRACT

We report bottom contact organic field-effect transistors (OFETs) with various surface treatments based on n-channel materials, specifically, 1,4,5,8-naphthalene-teracarboxylic diimides (NTCDIs) with three different fluorinated N-substituents, systematically studied with a particular emphasis on the interplay between the morphology of the organic semiconductor films and the electrical device properties. The morphological origins of the improvements were directly and dramatically visualized at the semiconductor-contact interface. As a result of a series of treatments, a large range of performances of bottom contact side-chain-fluorinated NTCDI OFETs (mobility from 1 x 10(-6) to 8 x 10(-2) cm(2)/(V s), on/off ratio from 1 x 10(2) to 1 x 10(5)) were obtained. The surface treatments enabled systems that had shown essentially no OFET activity without electrode modification activity to perform nearly as well as top contact devices made from the same materials. In addition, for the fresh bottom contact NTCDI device, the effect of gate bias stress on the tens-of-minutes time scale, during which the threshold voltage (V(t)) shifted and relaxed with similar time constants, was observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...