Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 4535, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33633206

ABSTRACT

To investigate the effects of their surface recovery and optical properties, extremely small sized (12 µm × 12 µm mesa area) red AlGaInP micro light emitting diodes ([Formula: see text] LED) were fabricated using a diluted hydrofluoric acid (HF) surface etch treatment. After the chemical treatment, the external quantum efficiencies (EQEs) of [Formula: see text]-LED at low and high injection current regions have been improved by 35.48% and 12.86%, respectively. The different phenomena of EQEs have a complex relationship between the suppression of non-radiative recombination originating from the etching damage of the surface and the improvement of light extraction of the sidewalls. The constant enhancement of EQE at a high injection current it is attributed to the expansion of the active region's sidewall surface area by the selective etching of AlInP layers. The improved EQE at a low injection current is related to the minimization of the surface recombination caused by plasma damage from the surface. High-resolution transmission electron microscopy (HR-TEM) revealed physical defects on the sidewall surface, such as plasma-induced lattice disorder and impurity contamination damage, were eliminated using chemical treatment. This study suggests that chemical surface treatment using diluted HF acid can be an effective method for enhancing the [Formula: see text]-LED performance.

2.
Nanoscale Res Lett ; 11(1): 215, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27102904

ABSTRACT

We report the selective-area growth of a gallium nitride (GaN)-nanorod-based InGaN/GaN multiple-quantum-well (MQW) core-shell structure embedded in a three-dimensional (3D) light-emitting diode (LED) grown by metalorganic chemical vapor deposition (MOCVD) and its optical analysis. High-resolution transmission electron microscopy (HR-TEM) observation revealed the high quality of the GaN nanorods and the position dependence of the structural properties of the InGaN/GaN MQWs on multiple facets. The excitation and temperature dependences of photoluminescence (PL) revealed the m-plane emission behaviors of the InGaN/GaN core-shell nanorods. The electroluminescence (EL) of the InGaN/GaN core-shell-nanorod-embedded 3D LED changed color from green to blue with increasing injection current. This phenomenon was mainly due to the energy gradient and deep localization of the indium in the selectively grown InGaN/GaN core-shell MQWs on the 3D architecture.

3.
Nanotechnology ; 22(26): 265506, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21586813

ABSTRACT

This study reports that the visible-blind ultraviolet (UV) photodetecting properties of ZnO nanowire based photodetectors were remarkably improved by introducing ultrathin insulating MgO layers between the ZnO nanowires and Si substrates. All layers were grown without pause by metal organic chemical vapor deposition and the density and vertical arrangement of the ZnO nanowires were strongly dependent on the thickness of the MgO layers. The sample in which an MgO layer with a thickness of 8 nm was inserted had high density nanowires with a vertical alignment and showed dramatically improved UV photosensing performance (photo-to-dark current ratio = 1344.5 and recovery time = 350 ms). The photoresponse spectrum revealed good visible-blind UV detectivity with a sharp cut off at 378 nm and a high UV/visible rejection ratio. A detailed discussion regarding the developed UV photosensing mechanism from the introduction of the i-MgO layers and highly dense nanowires in the n-ZnO nanowires/i-MgO/n-Si substrates structure is presented in this work.

SELECTION OF CITATIONS
SEARCH DETAIL
...