Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 10(8): 4690-4697, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-35495267

ABSTRACT

Ion reservoir and binder-like effects of gel polymer electrolytes (GPEs) are suggested for working mechanisms to enhance rate capability and cycling stability of activated carbon (AC) supercapacitors (SCs) even at 3.4 V. Analysis on kinetics from cyclic voltammetry, electrochemical reactions through in situ Fourier-transform infrared spectroscopy, and differential information of galvanostatic curves reveals that the increased rate-capability is derived dominantly by an improved non-faradaic process by the ion reservoir effect of GPEs in the AC. Although the designed GPEs induce slightly higher bulk and diffusion resistance at the incipient stage, the GPEs play a binder-like function to suppress detachment of AC particles and aggravation of impedance parameters during cycling at 3.4 V.

2.
J Colloid Interface Sci ; 383(1): 36-42, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22795947

ABSTRACT

In this paper, we demonstrate an easy way to prepare a stable reduced graphene oxide (RGO) dispersion in aqueous or organic media by simple adjustment of the degree of reduction and pH of RGO dispersion, and a subsequent fabrication of transparent conductive RGO thin films on various substrates using a spray coating technique. RGOs were prepared using a hydrazine reducing agent from graphene oxide (GO), which was oxidized from graphite via a modified Hummers' method. The degree of reduction determined the surface properties, such as atomic composition, surface polarity, and potential of RGO platelets. In addition, pH significantly affected the surface potential of graphene dispersion. The fine adjustment of degree of reduction and pH of RGO dispersion made production of fine RGO dispersions in aqueous and organic media such as ethanol and DMF possible without any aid of dispersing agents. The stable RGO dispersion using volatile ethanol medium provided a unique advantage to be spray-coated into uniform transparent conductive RGO thin films on various substrates including silicon wafer, flexible polycarbonate film regardless of their surface properties, and even on non-planar substrates such as round-shaped glassware at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...