Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38138694

ABSTRACT

The electrical properties of (Ba0.7Sr0.3-xCax)(Ti0.9Zr0.1)O3 (0 ≤ x ≤ 0.2) (BSCTZ) ceramics prepared using citrate gelation (CG) method were investigated by substituting Ca2+ ions for the Sr2+ sites based on the structural characteristics of the ceramics. BSCTZ was sintered for 3 h at 1300 °C, lower than the temperature (1550 °C) at which the specimens prepared using the solid-state reaction (SSR) method were sintered, which lasted for 6 h. As the amount of substituted Ca2+ ions increased, the unit cell volume of the BSCTZ decreased because of the smaller ionic radius of the Ca2+ ions compared to the Sr2+ ions. The dielectric constant of BaTiO3-based ceramics is imparted by factors such as the tetragonality and B-site bond valence of the ceramics. Although the ceramic tetragonality increased with Ca2+ ion substitution, the x = 0.05 specimens exhibited the highest dielectric constant. The decrease in the dielectric constant of the sintered x > 0.05 specimens was attributed to the increase in the B-site bond valence of the ABO3 perovskite structure. Owing to the large number of grain boundaries, the breakdown voltage (6.6839 kV/mm) of the BSCTZ prepared using the CG method was significantly improved in relation to that (2.0043 kV/mm) of the specimen prepared using the SSR method.

2.
Chemosphere ; 184: 849-856, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28646767

ABSTRACT

A novel TiO2@MgO-Fe2O3 core-shell structure has been synthesized via a hydrolysis and co-precipitation method followed by calcination at 500 °C and has proven to be an efficient photocatalyst. The obtained TiO2@MgO-Fe2O3 core-shell was characterized by scanning electron microscopy, X-ray diffraction, and UV-Vis diffused reflectance techniques. Its photocatalytic activity toward 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated in aqueous solutions with and without visible light irradiation in the presence and absence of hydrogen peroxide. It was revealed that a strong electronic coupling exists between two components within the TiO2@MgO-Fe2O3 core-shell structure. The present findings clearly highlight that TiO2@MgO-Fe2O3 exhibits excellent photocatalytic activity under visible light irradiation in the presence of H2O2. More than 83% degradation of 2,4-D was observed within 240 min, at an initial concentration of 100 mg L-1 with 0.5 g of catalyst per liter. Moreover, the material showed high chemical stability after four consecutive experiments with no significant difference in the rate of photocatalytic degradation. Therefore, the results reported herein offer a green, low cost and highly efficient photocatalyst for environmental remediation.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/chemistry , Models, Chemical , Photolysis , Titanium/chemistry , Catalysis , Ferric Compounds , Hydrogen Peroxide/chemistry , Light , Microscopy, Electron, Scanning , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...