Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 11(5): 4210-6, 2011 May.
Article in English | MEDLINE | ID: mdl-21780429

ABSTRACT

We investigate the effect of functional groups of pyrene molecules on the electrical sensing performance of single-walled carbon nanotubes (SWNTs) based DNA biosensor, in which pyrenes with three different functional groups of carboxylic acid (Py-COOH), aldehyde (Py-CHO) and amine (Py-NH2) are used as linker molecules to immobilize DNA on the SWNT films. UV/Visible absorption spectra results show that all of the pyrene molecules are successfully immobilized on the SWNT surface via pi-pi stacking interaction. Based on fluorescence analysis, we show that the amide bonding of amine terminated DNA via pyrene containing carboxylic groups is the most efficient to immobilize DNA on the nanotube film. The electrical detection results show that the conductance of Py-COOH modified SWNT film is increased upon DNA immobilization, followed by further increase after hybridization of target DNAs. It indicates that the pyrene molecules with carboxylic acid groups play an important role to achieve highly efficient label-free detection by nondestructive and specific immobilization of DNAs.


Subject(s)
DNA/analysis , DNA/genetics , Nanotubes, Carbon , Nucleic Acid Hybridization , Pyrenes/chemistry , Spectrophotometry, Ultraviolet
2.
J Nanosci Nanotechnol ; 11(5): 4540-5, 2011 May.
Article in English | MEDLINE | ID: mdl-21780493

ABSTRACT

Carbon nanotubes (CNTs) have attracted considerable attention for applications using their superior mechanical, thermal and electrical properties. A simple method to controllably align single-walled CNTs (SWNTs) by using magnetic particles embedded with superparamagnetic iron oxide as an accelerator under the magnetic field was developed. The functionalization of SWNTs using biotin, interacted with streptavidin-coupled magnetic particles (micro-to-nano in diameter), and layer-by-layer assembly were performed for the alignment of a particular direction onto the clean silicon and the gold substrate at very low magnetic forces (0.02-0.89 T) at room temperature. The successful alignment of the SWNTs with multi-layer film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By changing the orientation and location of the substrates, crossed-networks of SWNTs-magnetic particle complex could easily be fabricated. We suggest that this approach, which consists of a combination of biological interaction among streptavidin-biotin and magnetite particles, should be useful for lateral orientation of individual SWNTs with controllable direction.


Subject(s)
Magnetics , Nanotubes, Carbon , Proteins/metabolism , Ligands , Microscopy, Electron, Scanning , Protein Binding
3.
Nanoscale ; 3(4): 1361-73, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21359350

ABSTRACT

The use of carbon nanotubes (CNTs) as transparent conducting films is one of the most promising aspects of CNT-based applications due to their high electrical conductivity, transparency, and flexibility. However, despite many efforts in this field, the conductivity of carbon nanotube network films at high transmittance is still not sufficient to replace the present electrodes, indium tin oxide (ITO), due to the contact resistances and semi-conducting nanotubes of the nanotube network films. Many studies have attempted to overcome such problems by the chemical doping and hybridization of conducting guest components by various methods, including acid treatment, deposition of metal nanoparticles, and the creation of a composite of conducting polymers. This review focuses on recent advances in surface-modified carbon nanotube networks for transparent conducting film applications. Fabrication methods will be described, and the stability of carbon nanotube network films prepared by various methods will be demonstrated.


Subject(s)
Membranes, Artificial , Nanotechnology/trends , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Electric Conductivity
4.
J Am Chem Soc ; 131(2): 742-8, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19072279

ABSTRACT

We developed a novel method of vertical alignment of SWNTs using a single-step process for the simultaneous vertical alignment of the SWNTs by a magnetic field and the fixation of their alignment by means of the direct evaporation of the films. We fabricated Fe-oxide/SWNT samples that are reacted by iron-oleate complex, oleic acid and cut SWNTs in 1-octadecene. The Fe-oxide/SWNT samples are dispersed in N,N-dimethylformamide and the resulting solution was deposited on an ITO glass substrate using the spraying method with magnetic field. After evaporation of the SWNT solution in the presence of a magnetic field, we transferred the nanotubes to the vacuum-evaporator chamber, and titanium is evaporated by e-beam evaporation to hold the vertical alignment of the SWNTs. The resulting SWNTs exhibit the formation of a high degree of vertically aligned SNWTs over a large area. We showed that the degree of orientation of the SWNTs is strongly influenced by the field strength, film thickness of the evaporating molecules and evaporating rates. This technique takes significant advantages of the alignment of SWNTs with high aspect ratio at room temperature, without any organic binders and without the need for further alignment procedures. Moreover, this method might be applicable to other anisotropic materials with high aspect ratio.

5.
J Phys Chem B ; 109(21): 10584-9, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-16852284

ABSTRACT

Single-walled carbon nanotubes (SWNTs) have been chemically attached with high density onto a patterned substrate. To form the SWNT pattern, the substrate was treated with acid-labile group protected amine, and an amine prepattern was formed using a photolithographic process with a novel polymeric photoacid generator (PAG). The polymeric PAG contains a triphenylsulfonium salt on its backbone and was synthesized to obtain a PAG with enhanced efficiency and ease of spin-coating onto the amine-modified glass substrate. The SWNT monolayer pattern was then formed through the amidation reaction between the carboxylic acid groups of carboxylated SWNTs (ca-SWNTs) and the prepatterned amino groups. A high-density multilayer was fabricated via further repeated reaction between the carboxylic acid groups of the ca-SWNTs and the amino groups of the linker with the aid of a condensation agent. The formation of covalent amide bonding was confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Scanning electron microscopy and UV-vis-near-IR results show that the patterned SWNT films have uniform coverage with high surface density. Unlike previously reported patterned SWNT arrays, this ca-SWNT patterned layer has high surface density and excellent surface adhesion due to its direct chemical bonding to the substrate.


Subject(s)
Light , Nanotubes, Carbon/chemistry , Amides/chemistry , Carboxylic Acids/chemistry , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Models, Chemical , Photochemistry/methods , Polymers/chemistry , Spectrophotometry, Infrared/methods , Spectrophotometry, Ultraviolet , Substrate Specificity , Sulfonium Compounds/chemistry , Surface Properties , Ultraviolet Rays
6.
Langmuir ; 20(20): 8886-91, 2004 Sep 28.
Article in English | MEDLINE | ID: mdl-15379522

ABSTRACT

DNA oligonucleotides were covalently immobilized to prepatterned single-walled carbon nanotube (SWNT) multilayer films by amidation. SWNT multilayer films were constructed via consecutive condensation reactions creating stacks of functionalized SWNT layers linked together by 4,4'-oxydianiline. Aminated- or carboxylated-DNA oligonucleotides were covalently immobilized to the respective carboxylated or aminated SWNT multilayer films through amide bond formation using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. UV-vis-NIR spectroscopic analysis indicated that the SWNT film surface density increased uniformly according to the number of reaction cycles. Scanning electron microscopy and contact angle measurements of the SWNT multilayer film revealed a uniform coverage over the substrate surface. The covalent attachment of DNA oligonucleotides to the SWNT multilayer films and their subsequent hybridization with complementary oligonucleotides were verified using X-ray photoelectron spectroscopy and fluorescence-based measurements. This is the first report demonstrating that DNA oligonucleotides can be covalently attached to immobilized SWNT multilayer films. The anchored DNA oligonucleotides were shown to exhibit excellent specificity, realizing their potential in future biosensor applications.


Subject(s)
DNA/chemistry , Nanotubes, Carbon/chemistry , Oligonucleotides/chemistry , Molecular Structure , Surface Properties
7.
Chem Commun (Camb) ; (5): 526-7, 2004 Mar 07.
Article in English | MEDLINE | ID: mdl-14973590

ABSTRACT

Carbon nanotube conducting arrays were constructed via consecutive amidation reactions with the aid of a linker molecule and a condensation agent on a patterned amine-terminated glass substrate. The electrical resistivity of the nanotube films was sensitive to the degree of coverage for the substrate, making it possible to tailor nanotube multilayers suitable for use in micro- or nanoscale electronic devices and circuits.

SELECTION OF CITATIONS
SEARCH DETAIL
...