Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Intell Med ; 144: 102654, 2023 10.
Article in English | MEDLINE | ID: mdl-37783547

ABSTRACT

Amyloid positivity is an early indicator of Alzheimer's disease and is necessary to determine the disease. In this study, a deep generative model is utilized to predict the amyloid positivity of cognitively normal individuals using proxy measures, such as structural MRI scans, demographic variables, and cognitive scores, instead of invasive direct measurements. Through its remarkable efficacy in handling imperfect datasets caused by missing data or labels, and imbalanced classes, the model outperforms previous studies and widely used machine learning approaches with an AUROC of 0.8609. Furthermore, this study illuminates the model's adaptability to diverse clinical scenarios, even when feature sets or diagnostic criteria differ from the training data. We identify the brain regions and variables that contribute most to classification, including the lateral occipital lobes, posterior temporal lobe, and APOE ϵ4 allele. Taking advantage of deep generative models, our approach can not only provide inexpensive, non-invasive, and accurate diagnostics for preclinical Alzheimer's disease, but also meet real-world requirements for clinical translation of a deep learning model, including transferability and interpretability.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Cognitive Dysfunction/diagnosis , Brain/diagnostic imaging , Magnetic Resonance Imaging , Machine Learning
2.
IEEE Trans Neural Netw Learn Syst ; 33(8): 3343-3356, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33531305

ABSTRACT

Learning classifiers with imbalanced data can be strongly biased toward the majority class. To address this issue, several methods have been proposed using generative adversarial networks (GANs). Existing GAN-based methods, however, do not effectively utilize the relationship between a classifier and a generator. This article proposes a novel three-player structure consisting of a discriminator, a generator, and a classifier, along with decision boundary regularization. Our method is distinctive in which the generator is trained in cooperation with the classifier to provide minority samples that gradually expand the minority decision region, improving performance for imbalanced data classification. The proposed method outperforms the existing methods on real data sets as well as synthetic imbalanced data sets.

3.
Pac Symp Biocomput ; 25: 563-574, 2020.
Article in English | MEDLINE | ID: mdl-31797628

ABSTRACT

Typical personal medical data contains sensitive information about individuals. Storing or sharing the personal medical data is thus often risky. For example, a short DNA sequence can provide information that can identify not only an individual, but also his or her relatives. Nonetheless, most countries and researchers agree on the necessity of collecting personal medical data. This stems from the fact that medical data, including genomic data, are an indispensable resource for further research and development regarding disease prevention and treatment. To prevent personal medical data from being misused, techniques to reliably preserve sensitive information should be developed for real world applications. In this paper, we propose a framework called anonymized generative adversarial networks (AnomiGAN), to preserve the privacy of personal medical data, while also maintaining high prediction performance. We compared our method to state-of-the-art techniques and observed that our method preserves the same level of privacy as differential privacy (DP) and provides better prediction results. We also observed that there is a trade-off between privacy and prediction results that depends on the degree of preservation of the original data. Here, we provide a mathematical overview of our proposed model and demonstrate its validation using UCI machine learning repository datasets in order to highlight its utility in practice. The code is available at https://github.com/hobae/AnomiGAN/.


Subject(s)
Computational Biology , Confidentiality , Machine Learning , Sequence Analysis, DNA , Genomics , Humans , Privacy
SELECTION OF CITATIONS
SEARCH DETAIL
...