Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 32(4): 1081-1101, 2020 04.
Article in English | MEDLINE | ID: mdl-32086363

ABSTRACT

Nonsense-mediated mRNA decay (NMD), an mRNA quality control process, is thought to function in plant immunity. A subset of fully spliced (FS) transcripts of Arabidopsis (Arabidopsis thaliana) resistance (R) genes are upregulated during bacterial infection. Here, we report that 81.2% and 65.1% of FS natural TIR-NBS-LRR (TNL) and CC-NBS-LRR transcripts, respectively, retain characteristics of NMD regulation, as their transcript levels could be controlled posttranscriptionally. Both bacterial infection and the perception of bacteria by pattern recognition receptors initiated the destruction of core NMD factors UP-FRAMESHIFT1 (UPF1), UPF2, and UPF3 in Arabidopsis within 30 min of inoculation via the independent ubiquitination of UPF1 and UPF3 and their degradation via the 26S proteasome pathway. The induction of UPF1 and UPF3 ubiquitination was delayed in mitogen-activated protein kinase3 (mpk3) and mpk6, but not in salicylic acid-signaling mutants, during the early immune response. Finally, previously uncharacterized TNL-type R transcripts accumulated in upf mutants and conferred disease resistance to infection with a virulent Pseudomonas strain in plants. Our findings demonstrate that NMD is one of the main regulatory processes through which PRRs fine-tune R transcript levels to reduce fitness costs and achieve effective immunity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Nonsense Mediated mRNA Decay/genetics , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Immunity , Proteolysis , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Autoimmunity/genetics , Gene Expression Regulation, Plant , MAP Kinase Signaling System , Mutation/genetics , Pseudomonas/pathogenicity , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ubiquitination
2.
Mol Med Rep ; 18(2): 2499-2505, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29901153

ABSTRACT

It is well known that prostaglandin (PG) E2 and PGF2α are secreted in copious amounts from the menstruating uterus. The aim of the present study was to determine whether PGs affect the growth of uterine leiomyomas (ULs) to the same extent as estrogen or progesterone (P4). The present study evaluated the expression of eight microRNAs (miRNAs) by reverse transcription­quantitative polymerase chain reaction (RT­qPCR) through treatment with estradiol (E2), P4, PGE2, PGF2α and each antagonist or cyclooxygenase­2 (COX­2) inhibitor of cultured leiomyoma and myometrial cells (LC and MC, respectively). The eight miRNAs were divided into two groups according to their primary biological action, namely apoptosis­regulating miRNAs (let­7a, miR­21, miR­26a and miR­200a) and inflammation­regulating miRNAs (miR­29b, miR­93, miR­106b and miR­100b). PGE2 induced significantly higher expression of the 3 anti­apoptotic miRs, let­7a, miR­16a and miR­200a, in LC when compared with the non­treated control or E2. PGE2 significantly promoted a greater expression of let­7a and miR­26a in LC when compared with P4. Overall, PGE2 exerted the highest anti­apoptotic and anti­inflammatory effect in LC, which was comparable with E2. It was not observed among the inflammation­regulating miRNAs in LC. PGF2α did not exert effects as prominent as those of PGE2. In MC, PGs and sex steroids exerted no similar effects on MC compared with LC. The present study demonstrated that PGE2 levels during menstruation may affect the growth of preexisting ULs without affecting the normal myometrium. Therefore, the control of secretion of PGs from the menstruating uterus or the administration of antagonists may be an alternative therapy for inhibiting the growth of ULs.


Subject(s)
Leiomyoma/genetics , MicroRNAs/genetics , Prostaglandins/genetics , Cell Line, Tumor , Cyclooxygenase 2/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Leiomyoma/metabolism , Leiomyoma/pathology , MicroRNAs/classification , Myometrium/metabolism , Myometrium/pathology , Progesterone/genetics , Prostaglandins/classification
3.
Front Plant Sci ; 8: 1330, 2017.
Article in English | MEDLINE | ID: mdl-28824668

ABSTRACT

Ralstonia solanacearum is the causal agent of the devastating bacterial wilt disease in many high value Solanaceae crops. R. solanacearum secretes around 70 effectors into host cells in order to promote infection. Plants have, however, evolved specialized immune receptors that recognize corresponding effectors and confer qualitative disease resistance. In the model species Arabidopsis thaliana, the paired immune receptors RRS1 (resistance to Ralstonia solanacearum 1) and RPS4 (resistance to Pseudomonas syringae 4) cooperatively recognize the R. solanacearum effector PopP2 in the nuclei of infected cells. PopP2 is an acetyltransferase that binds to and acetylates the RRS1 WRKY DNA-binding domain resulting in reduced RRS1-DNA association thereby activating plant immunity. Here, we surveyed the naturally occurring variation in PopP2 sequence among the R. solanacearum strains isolated from diseased tomato and pepper fields across the Republic of Korea. Our analysis revealed high conservation of popP2 sequence with only three polymorphic alleles present amongst 17 strains. Only one variation (a premature stop codon) caused the loss of RPS4/RRS1-dependent recognition in Arabidopsis. We also found that PopP2 harbors a putative eukaryotic transcriptional repressor motif (ethylene-responsive element binding factor-associated amphiphilic repression or EAR), which is known to be involved in the recruitment of transcriptional co-repressors. Remarkably, mutation of the EAR motif disabled PopP2 avirulence function as measured by the development of hypersensitive response, electrolyte leakage, defense marker gene expression and bacterial growth in Arabidopsis. This lack of recognition was partially but significantly reverted by the C-terminal addition of a synthetic EAR motif. We show that the EAR motif-dependent gain of avirulence correlated with the stability of the PopP2 protein. Furthermore, we demonstrated the requirement of the PopP2 EAR motif for PTI suppression. A yeast two-hybrid screen indicated that PopP2 does not interact with any well-known Arabidopsis transcriptional co-repressors. Overall, this study reveals high conservation of the PopP2 effector in Korean R. solanacearum strains isolated from commercially cultivated tomato and pepper genotypes. Importantly, our data also indicate that the PopP2 conserved repressor motif could contribute to the effector accumulation in plant cells.

4.
Plant Pathol J ; 32(4): 357-62, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27493611

ABSTRACT

ALD1 (ABERRANT GROWTH AND DEATH2 [AGD2]-LIKE DEFENSE1) is one of the key defense regulators in Arabidopsis thaliana and Nicotiana benthamiana. In these model plants, ALD1 is responsible for triggering basal defense response and systemic resistance against bacterial infection. As well ALD1 is involved in the production of pipecolic acid and an unidentified compound(s) for systemic resistance and priming syndrome, respectively. These previous studies proposed that ALD1 is a potential candidate for developing genetically modified (GM) plants that may be resistant to pathogen infection. Here we introduce a role of ALD1-LIKE gene of Oryza sativa, named as OsALD1, during plant immunity. OsALD1 mRNA was strongly transcribed in the infected leaves of rice plants by Magnaporthe oryzae, the rice blast fungus. OsALD1 proteins predominantly localized at the chloroplast in the plant cells. GM rice plants over-expressing OsALD1 were resistant to the fungal infection. The stable expression of OsALD1 also triggered strong mRNA expression of PATHOGENESIS-RELATED PROTEIN1 genes in the leaves of rice plants during infection. Taken together, we conclude that OsALD1 plays a role in disease resistance response of rice against the infection with rice blast fungus.

5.
Food Res Int ; 78: 343-351, 2015 Dec.
Article in English | MEDLINE | ID: mdl-28433302

ABSTRACT

We performed mass spectrometry-based metabolites profiling in Lonicera caerulea fruits according to seven ripening stages. During ripening, fruit color significantly changed from green to red, with sugars, organic acids, phenolic acids, anthocyanins, and flavonoids significantly altered. In particular, the contents of cyanidin-3-glucoside, peonidin-glucoside, peonidin-3-rutinoside and cyanidin-3-rutinoside, which are closely associated with color, were elevated from stages four to seven. The changes of antioxidant activity during ripening were similar to those of total phenolic and flavonoid contents. L. caerulea fruits at stage six (pale-purple) had higher antioxidant activity and total phenolic and flavonoid contents with higher cyanidin-3,5-diglucoside contents than those at stage seven (fully purple). From this study, we revealed the changes in the contents of primary and secondary metabolites with antioxidant properties during ripening, and these results could be helpful to determine the optimal harvest stage of L. caerulea fruit.

6.
J Agric Food Chem ; 62(9): 2126-33, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24483298

ABSTRACT

Metabolite profiling of three blueberry species (Vaccinium bracteatum Thunb., V. oldhamii Miquel., and V. corymbosum L.) was performed using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) combined multivariate analysis. Partial least-squares discriminant analysis clearly showed metabolic differences among species. GC-TOF-MS analysis revealed significant differences in amino acids, organic acids, fatty acids, sugars, and phenolic acids among the three blueberry species. UPLC-Q-TOF-MS analysis indicated that anthocyanins were the major metabolites distinguishing V. bracteatum from V. oldhamii. The contents of anthocyanins such as glycosides of cyanidin were high in V. bracteatum, while glycosides of delphinidin, petunidin, and malvidin were high in V. oldhamii. Antioxidant activities assessed using ABTS and DPPH assays showed the greatest activity in V. oldhamii and revealed the highest correlation with total phenolic, total flavonoid, and total anthocyanin contents and their metabolites.


Subject(s)
Blueberry Plants/chemistry , Fruit/chemistry , Plant Extracts/analysis , Antioxidants/analysis , Antioxidants/metabolism , Blueberry Plants/classification , Blueberry Plants/metabolism , Fruit/classification , Fruit/metabolism , Glycosides/analysis , Glycosides/metabolism , Phenols/analysis , Phenols/metabolism , Plant Extracts/metabolism , Species Specificity
7.
Toxicol Res ; 29(1): 7-14, 2013 Mar.
Article in English | MEDLINE | ID: mdl-24278623

ABSTRACT

Betaine supplementation has been shown to alleviate altered glucose and lipid metabolism in mice fed a high-fat diet or a high-sucrose diet. We investigated the beneficial effects of betaine in diabetic db/db mice. Alleviation of endoplasmic reticulum (ER) and oxidative stress was also examined in the livers and brains of db/db mice fed a betaine-supplemented diet. Male C57BL/KsJ-db/db mice were fed with or without 1% betaine for 5 wk (referred to as the db/db-betaine group and the db/db group, respectively). Lean non-diabetic db/db+ mice were used as the control group. Betaine supplementation significantly alleviated hyperinsulinemia in db/db mice. Betaine reduced hepatic expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha, a major transcription factor involved in gluconeogenesis. Lower serum triglyceride concentrations were also observed in the db/db-betaine group compared to the db/db group. Betaine supplementation induced hepatic peroxisome proliferator-activated receptor alpha and carnitine palmitoyltransferase 1a mRNA levels, and reduced acetyl-CoA carboxylase activity. Mice fed a betaine-supplemented diet had increased total glutathione concentrations and catalase activity, and reduced lipid peroxidation levels in the liver. Furthermore, betaine also reduced ER stress in liver and brain. c-Jun N-terminal kinase activity and tau hyperphosphorylation levels were lower in db/db mice fed a betaine-supplemented diet, compared to db/db mice. Our findings suggest that betaine improves hyperlipidemia and tau hyperphosphorylation in db/db mice with insulin resistance by alleviating ER and oxidative stress.

8.
J Med Food ; 16(7): 569-76, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23822143

ABSTRACT

Needles of pine species are rich in polyphenols, which may exert beneficial effects on human health. The present study was conducted to evaluate the in vitro and in vivo antioxidant effects of Pinus koraiensis needle water extracts (PKW). HepG2 cells were pretreated with various concentrations of PKW (from 10(-3) to 1 mg/mL) and oxidative stress was induced by tert-butyl hydroperoxide (t-BOOH). In the animal model, male ICR mice were fed a high-fat diet for 6 weeks to induce obesity, and then mice were continually fed a high-fat diet with or without orally administered PKW (400 mg/kg body weight) for 5 weeks. Pretreatment with PKW prevented significant increases in cytotoxicity and catalase activity induced by t-BOOH in HepG2 cells. Similarly, the catalase protein expression levels elevated by t-BOOH were abrogated in cells pretreated with PKW. In mice fed a high-fat diet, PKW significantly increased hepatic activities of catalase and glutathione reductase and lower lipid peroxidation levels were observed in the liver and kidney of mice with PKW supplementation. The present study demonstrates that PKW protects against oxidative stress in HepG2 cells treated with t-BOOH and in mice fed a high-fat diet.


Subject(s)
Oxidative Stress/drug effects , Pinus/chemistry , Plant Extracts/administration & dosage , Animals , Antioxidants/administration & dosage , Catalase/genetics , Catalase/metabolism , Glutathione Reductase/metabolism , Hep G2 Cells , Humans , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred ICR , Mice, Obese , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...