Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Science ; 384(6693): 312-317, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38669572

ABSTRACT

Electrostatic capacitors are foundational components of advanced electronics and high-power electrical systems owing to their ultrafast charging-discharging capability. Ferroelectric materials offer high maximum polarization, but high remnant polarization has hindered their effective deployment in energy storage applications. Previous methodologies have encountered problems because of the deteriorated crystallinity of the ferroelectric materials. We introduce an approach to control the relaxation time using two-dimensional (2D) materials while minimizing energy loss by using 2D/3D/2D heterostructures and preserving the crystallinity of ferroelectric 3D materials. Using this approach, we were able to achieve an energy density of 191.7 joules per cubic centimeter with an efficiency greater than 90%. This precise control over relaxation time holds promise for a wide array of applications and has the potential to accelerate the development of highly efficient energy storage systems.

2.
Adv Mater ; : e2311559, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520395

ABSTRACT

It is shown that structural disorder-in the form of anisotropic, picoscale atomic displacements-modulates the refractive index tensor and results in the giant optical anisotropy observed in BaTiS3, a quasi-1D hexagonal chalcogenide. Single-crystal X-ray diffraction studies reveal the presence of antipolar displacements of Ti atoms within adjacent TiS6 chains along the c-axis, and threefold degenerate Ti displacements in the a-b plane. 47/49Ti solid-state NMR provides additional evidence for those Ti displacements in the form of a three-horned NMR lineshape resulting from a low symmetry local environment around Ti atoms. Scanning transmission electron microscopy is used to directly observe the globally disordered Ti a-b plane displacements and find them to be ordered locally over a few unit cells. First-principles calculations show that the Ti a-b plane displacements selectively reduce the refractive index along the ab-plane, while having minimal impact on the refractive index along the chain direction, thus resulting in a giant enhancement in the optical anisotropy. By showing a strong connection between structural disorder with picoscale displacements and the optical response in BaTiS3, this study opens a pathway for designing optical materials with high refractive index and functionalities such as large optical anisotropy and nonlinearity.

3.
Adv Mater ; 35(49): e2303283, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37540897

ABSTRACT

As one of the most fundamental physical phenomena, charge density wave (CDW) order predominantly occurs in metallic systems such as quasi-1D metals, doped cuprates, and transition metal dichalcogenides, where it is well understood in terms of Fermi surface nesting and electron-phonon coupling mechanisms. On the other hand, CDW phenomena in semiconducting systems, particularly at the low carrier concentration limit, are less common and feature intricate characteristics, which often necessitate the exploration of novel mechanisms, such as electron-hole coupling or Mott physics, to explain. In this study, an approach combining electrical transport, synchrotron X-ray diffraction, and density-functional theory calculations is used to investigate CDW order and a series of hysteretic phase transitions in a dilute d-band semiconductor, BaTiS3 . These experimental and theoretical findings suggest that the observed CDW order and phase transitions in BaTiS3 may be attributed to both electron-phonon coupling and non-negligible electron-electron interactions in the system. This work highlights BaTiS3 as a unique platform to explore CDW physics and novel electronic phases in the dilute filling limit and opens new opportunities for developing novel electronic devices.

4.
Adv Mater ; 35(42): e2303588, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37529860

ABSTRACT

Materials with large birefringence (Δn, where n is the refractive index) are sought after for polarization control (e.g., in wave plates, polarizing beam splitters, etc.), nonlinear optics, micromanipulation, and as a platform for unconventional light-matter coupling, such as hyperbolic phonon polaritons. Layered 2D materials can feature some of the largest optical anisotropy; however, their use in most optical systems is limited because their optical axis is out of the plane of the layers and the layers are weakly attached. This work demonstrates that a bulk crystal with subtle periodic modulations in its structure-Sr9/8 TiS3 -is transparent and positive-uniaxial, with extraordinary index ne = 4.5 and ordinary index no = 2.4 in the mid- to far-infrared. The excess Sr, compared to stoichiometric SrTiS3 , results in the formation of TiS6 trigonal-prismatic units that break the chains of face-sharing TiS6 octahedra in SrTiS3 into periodic blocks of five TiS6 octahedral units. The additional electrons introduced by the excess Sr form highly oriented electron clouds, which selectively boost the extraordinary index ne and result in record birefringence (Δn > 2.1 with low loss). The connection between subtle structural modulations and large changes in refractive index suggests new categories of anisotropic materials and also tunable optical materials with large refractive-index modulation.

6.
Nat Commun ; 14(1): 3233, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37270530

ABSTRACT

Platinum single-atom catalysts hold promise as a new frontier in heterogeneous electrocatalysis. However, the exact chemical nature of active Pt sites is highly elusive, arousing many hypotheses to compensate for the significant discrepancies between experiments and theories. Here, we identify the stabilization of low-coordinated PtII species on carbon-based Pt single-atom catalysts, which have rarely been found as reaction intermediates of homogeneous PtII catalysts but have often been proposed as catalytic sites for Pt single-atom catalysts from theory. Advanced online spectroscopic studies reveal multiple identities of PtII moieties on the single-atom catalysts beyond ideally four-coordinated PtII-N4. Notably, decreasing Pt content to 0.15 wt.% enables the differentiation of low-coordinated PtII species from the four-coordinated ones, demonstrating their critical role in the chlorine evolution reaction. This study may afford general guidelines for achieving a high electrocatalytic performance of carbon-based single-atom catalysts based on other d8 metal ions.

7.
ACS Appl Mater Interfaces ; 14(36): 40793-40800, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36044267

ABSTRACT

A multifunctional electrolyte additive for lithium oxygen batteries (LOBs) was designed to have (1) a redox-active moiety to mediate decomposition of lithium peroxide (Li2O2 as the final discharge product) during charging and (2) a solvent moiety to solvate and stabilize lithium superoxide (LiO2 as the intermediate discharge product) in electrolyte during discharging. 4-Acetamido-TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidin-1-yl)oxyl) or AAT was employed as the additive working for both charge and discharge processes (amphi-active). The redox-active moiety was rooted in TEMPO, while the acetamido (AA) functional group inherited the high donor number (DN) of N,N-dimethylacetamide (DMAc). Integrating two functional moieties (TEMPO and AA) into a single molecule resulted in the bifunctionality of AAT (1) facilitating Li2O2 decomposition by the TEMPO moiety and (2) encouraging the solvent mechanism of Li2O2 formation by the high-DN AA moiety. Significantly improved LOB performances were achieved by the superoxide-solvating charge redox mediator, which were not obtained by a simple cocktail of TEMPO and DMAc.

8.
Adv Sci (Weinh) ; 7(15): 2000788, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32775161

ABSTRACT

Antiphase boundaries (APBs) in 2D transition metal dichalcogenides have attracted wide interest as 1D metallic wires embedded in a semiconducting matrix, which could be exploited in fully 2D-integrated circuits. Here, the anisotropic morphologies of APBs (i.e., linear and saw-toothed APBs) in the nanoscale are investigated. The experimental and computational results show that despite their anisotropic nanoscale morphologies, all APBs adopt a predominantly chalcogen-oriented dense structure to maintain the energetically most stable atomic configuration. Moreover, the effect of the nanoscale morphology of an APB on electron transport from two-probe field effect transistor measurements is investigated. A saw-toothed APB has a considerably lower electron mobility than a linear APB, indicating that kinks between facets are the main factors of scattering. The observations contribute to the systematical understanding of the faceted APBs and its impact on electrical transport behavior and it could potentially extend the applications of 2D materials through defect engineering to achieve the desired properties.

9.
Nat Commun ; 11(1): 412, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31964881

ABSTRACT

Chlorine evolution reaction (CER) is a critical anode reaction in chlor-alkali electrolysis. Although precious metal-based mixed metal oxides (MMOs) have been widely used as CER catalysts, they suffer from the concomitant generation of oxygen during the CER. Herein, we demonstrate that atomically dispersed Pt-N4 sites doped on a carbon nanotube (Pt1/CNT) can catalyse the CER with excellent activity and selectivity. The Pt1/CNT catalyst shows superior CER activity to a Pt nanoparticle-based catalyst and a commercial Ru/Ir-based MMO catalyst. Notably, Pt1/CNT exhibits near 100% CER selectivity even in acidic media, with low Cl- concentrations (0.1 M), as well as in neutral media, whereas the MMO catalyst shows substantially lower CER selectivity. In situ electrochemical X-ray absorption spectroscopy reveals the direct adsorption of Cl- on Pt-N4 sites during the CER. Density functional theory calculations suggest the PtN4C12 site as the most plausible active site structure for the CER.

10.
Chem Sci ; 11(43): 11692-11698, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-34123199

ABSTRACT

Despite their potential as promising alternatives to current state-of-the-art lithium-ion batteries, aqueous rechargeable Zn-ion batteries are still far away from practical applications. Here, we present a new class of single-ion conducting electrolytes based on a zinc sulfonated covalent organic framework (TpPa-SO3Zn0.5) to address this challenging issue. TpPa-SO3Zn0.5 is synthesised to exhibit single Zn2+ conduction behaviour via its delocalised sulfonates that are covalently tethered to directional pores and achieve structural robustness by its ß-ketoenamine linkages. Driven by these structural and physicochemical features, TpPa-SO3Zn0.5 improves the redox reliability of the Zn metal anode and acts as an ionomeric buffer layer for stabilising the MnO2 cathode. Such improvements in the TpPa-SO3Zn0.5-electrode interfaces, along with the ion transport phenomena, enable aqueous Zn-MnO2 batteries to exhibit long-term cyclability, demonstrating the viability of COF-mediated electrolytes for Zn-ion batteries.

11.
ACS Nano ; 13(8): 9190-9197, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31319025

ABSTRACT

Reactive oxygen species or superoxide (O2-), which damages or ages biological cells, is generated during metabolic pathways using oxygen as an electron acceptor in biological systems. Superoxide dismutase (SOD) protects cells from superoxide-triggered apoptosis by converting superoxide to oxygen and peroxide. Lithium-oxygen battery (LOB) cells have the same aging problems caused by superoxide-triggered side reactions. We transplanted the function of SOD of biological systems into LOB cells. Malonic acid-decorated fullerene (MA-C60) was used as a superoxide disproportionation chemocatalyst mimicking the function of SOD. As expected, MA-C60 as the superoxide scavenger improved capacity retention along charge/discharge cycles successfully. A LOB cell that failed to provide a meaningful capacity just after several cycles at high current (0.5 mA cm-2) with 0.5 mAh cm-2 cutoff survived up to 50 cycles after MA-C60 was introduced to the electrolyte. Moreover, the SOD-mimetic catalyst increased capacity, e.g., more than a 6-fold increase at 0.2 mA cm-2. The experimentally observed toroidal morphology of the final discharge product of oxygen reduction (Li2O2) and density functional theory calculation confirmed that the solution mechanism of Li2O2 formation, more beneficial than the surface mechanism from the capacity-gain standpoint, was preferred in the presence of MA-C60.


Subject(s)
Biomimetics , Electric Power Supplies , Superoxide Dismutase/chemistry , Superoxides/pharmacology , Apoptosis/drug effects , Catalysis , Electrons , Fullerenes/chemistry , Lithium/chemistry , Metabolic Networks and Pathways/drug effects , Oxygen/chemistry , Peroxides/chemistry , Reactive Oxygen Species/chemistry , Superoxides/chemistry
12.
ACS Appl Mater Interfaces ; 11(22): 20174-20182, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31045348

ABSTRACT

Chiral self-sorting has great potential for constructing new complex structures and determining chirality-dependent properties in multicomponent mixtures. However, it is still of great challenge to achieve high fidelity chiral self-discrimination. Besides, the researches on the coordination polymers or metal-organic frameworks for micro/nanooptoelectronics are still rare due to their low conductivity and difficulty in developing a rapid and simple scale-up synthetic method. Here, heterochiral supramolecular coordination networks (SCNs) were synthesized by the solvothermal reaction of naphthalene diimide enantiomers and cadmium iodide, using the chirality as a synthetic tuning parameter to control the morphologies. Intriguingly, heterochiral micro/nanocrystals exhibited photochromic and photodetecting properties. Furthermore, we also developed a simple and efficient doping method to enhance the conductivity and photoresponsivity of micro/nanocrystals using hydrazine. From experimental and theoretical studies, the mechanism was suggested as follows: the radicals in the singly occupied molecular orbital level of the ligands provide charge carriers that can undergo "through-space" transport between π-π stacked ligands and the electron transfer from adsorbed hydrazine to the SCNs results in reduction of energy gap, leading to increased conductivity. Our findings demonstrate a simple and powerful strategy for implementing coordination networks with redox ligands for micro/nanooptoelectronic applications.

13.
Nano Lett ; 19(9): 5879-5884, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31141382

ABSTRACT

Lithium (Li) metal has garnered considerable attention in next-generation battery anodes. However, its environmental vulnerability, along with the electrochemical instability and safety failures, poses a formidable challenge to commercial use. Here, we describe a new class of antioxidative Li reservoir based on interstitial channels of single-walled carbon nanotube (SWCNT) bundles. The Li preferentially confined in the interstitial channels exhibits unusual thermodynamic stability and exceptional capacity even after exposure to harsh environmental conditions, thereby enabling us to propose a new lithiation/delithiation mechanism in carbon nanotubes. To explore practical application of this approach, the Li confined in the SWCNT bundles is electrochemically extracted and subsequently plated on a copper foil. The resulting Li-plated copper foil shows reliable charge/discharge behavior comparable to those of pristine Li foils. Benefiting from the confinement effect of the interstitial channels, the SWCNT bundles hold great promise as an environmentally tolerant, high-capacity Li reservoir.

14.
Nat Commun ; 10(1): 1723, 2019 04 12.
Article in English | MEDLINE | ID: mdl-30979877

ABSTRACT

Developing efficient bifunctional catalysts for overall water splitting that are earth-abundant, cost-effective, and durable is of considerable importance from the practical perspective to mitigate the issues associated with precious metal-based catalysts. Herein, we introduce a heterostructure comprising perovskite oxides (La0.5Sr0.5CoO3-δ) and molybdenum diselenide (MoSe2) as an electrochemical catalyst for overall water electrolysis. Interestingly, formation of the heterostructure of La0.5Sr0.5CoO3-δ and MoSe2 induces a local phase transition in MoSe2, 2 H to 1 T phase, and more electrophilic La0.5Sr0.5CoO3-δ with partial oxidation of the Co cation owing to electron transfer from Co to Mo. Together with these synergistic effects, the electrochemical activities are significantly improved for both hydrogen and oxygen evolution reactions. In the overall water splitting operation, the heterostructure showed excellent stability at the high current density of 100 mA cm-2 over 1,000 h, which is exceptionally better than the stability of the state-of-the-art platinum and iridium oxide couple.

15.
J Am Chem Soc ; 141(14): 5880-5885, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30888813

ABSTRACT

Porous crystalline materials such as covalent organic frameworks and metal-organic frameworks have garnered considerable attention as promising ion conducting media. However, most of them additionally incorporate lithium salts and/or solvents inside the pores of frameworks, thus failing to realize solid-state single lithium-ion conduction behavior. Herein, we demonstrate a lithium sulfonated covalent organic framework (denoted as TpPa-SO3Li) as a new class of solvent-free, single lithium-ion conductors. Benefiting from well-designed directional ion channels, a high number density of lithium-ions, and covalently tethered anion groups, TpPa-SO3Li exhibits an ionic conductivity of 2.7 × 10-5 S cm-1 with a lithium-ion transference number of 0.9 at room temperature and an activation energy of 0.18 eV without additionally incorporating lithium salts and organic solvents. Such unusual ion transport phenomena of TpPa-SO3Li allow reversible and stable lithium plating/stripping on lithium metal electrodes, demonstrating its potential use for lithium metal electrodes.

16.
ACS Appl Mater Interfaces ; 10(42): 36194-36201, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30270614

ABSTRACT

As a basic characteristic of the natural environment and living matter, chirality has been used in various scientific and technological fields. Chiral discrimination is of particular interest owing to its importance in catalysis, organic synthesis, biomedicine, and pharmaceutics. However, it is still very challenging to effectively and selectively sense and separate different enantiomers. Here, enantio-differentiating chemosensor systems have been developed through spontaneous chiral functionalization of the surface of graphene field-effect transistors (GFETs). GFET sensors functionalized using noncovalent interactions between graphene and a newly synthesized chiral-functionalized pyrene material, Boc-l-Phe-Pyrene, exhibit highly enantioselective detection of natural acryclic monoterpenoid enantiomers, that is, ( R)-(+)- and ( S)-(-)-ß-citronellol. On the basis of a computational study, the origin of enantio-differentiation is assigned to the discriminable charge transfer from ( R)-(+)- or ( S)-(-)-ß-citronellol into graphene with a significant difference in binding strength depending on surface morphology. The chemosensor system developed herein has great potential to be applied in miniaturized and rapid enantioselective sensing with high sensitivity and selectivity.

17.
Nat Commun ; 9(1): 3933, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30258195

ABSTRACT

Chiral supramolecules have great potential for use in chiral recognition, sensing, and catalysis. Particularly, chiral supramolecular biocoordination polymers (SBCPs) provide a versatile platform for characterizing biorelated processes such as chirality transcription. Here, we selectively synthesize homochiral and heterochiral SBCPs, composed of chiral naphthalene diimide ligands and Zn ions, from enantiomeric and mixed R-ligands and S-ligands, respectively. Notably, we find that the chiral self-sorted SBCPs exhibit multifunctional properties, including photochromic, photoluminescent, photoconductive, and chemiresistive characteristics, thus can be used for various sensors. Specifically, these materials can be used for detecting hazardous amine materials due to the electron transfer from the amine to the SBCP surface and for enantioselectively sensing a chiral species naproxen due to the different binding energies with regard to their chirality. These results provide guidelines for the synthesis of chiral SBCPs and demonstrate their versatility and feasibility for use in various sensors covering photoactive, chemiresistive, and chiral sensors.


Subject(s)
Amino Acids/chemistry , Biosensing Techniques , Imides/chemistry , Naphthalenes/chemistry , Isomerism , Ligands , Photochemical Processes , Polymers/chemical synthesis
18.
Small ; 14(36): e1802191, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30095220

ABSTRACT

Transition metal dichalcogenides, especially MoS2 , are considered as promising electrocatalysts for hydrogen evolution reaction (HER). Since the physicochemical properties of MoS2 and electrode morphology are highly sensitive factor for HER performance, designed synthesis is highly pursued. Here, an in situ method to prepare a 3D carbon/MoS2 hybrid catalyst, motivated by the graphene ribbon synthesis process, is reported. By rational design strategies, the hybrid electrocatalysts with cross-connected porous structure are obtained, and they show a high HER activity even comparable to the state-of-the-art MoS2 catalyst without appreciable activity loss in long-term operations. Based on various physicochemical techniques, it is demonstrated that the synthetic procedure can effectively guide the formation of active site and 3D structure with a distinctive feature; increased exposure of active sites by decreased domain size and intrinsically high activity through controlling the number of stacking layers. Moreover, the importance of structural properties of the MoS2 -based catalysts is verified by controlled experiments, validating the effectiveness of the designed synthesis approach.

19.
Nanoscale ; 10(8): 3838-3848, 2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29417123

ABSTRACT

Transition metal dichalcogenides (TMDs) have attracted considerable attention as active electrocatalysts for the hydrogen evolution reaction (HER). Since TMD catalysts are commonly supported on carbon to endow electrical conductivity, understanding the growth behaviour of TMDs on carbon surfaces is crucial, and yet remains to be explored. In this work, we investigated the growth behaviour of tungsten sulfide (WSx) on carbon surfaces inside the confined nanopores. Experimental and computational studies revealed the preferential bonding between the basal planes of WSx and carbon surfaces, as well as the subsequent horizontal growth of WSx. As a result, subnanometer WSx clusters were formed at a low WSx loading, and grew into monolayer WS2 nanoplates with increased WSx loadings. In contrast, a TMD analogue, MoS2, favors edge plane bonding with carbon surfaces and subsequent stacking of nanoplate layers, leading to multilayer MoS2 nanoplates with increased MoS2 loadings. A time-dependent growth of WSx further corroborated the formation of WS2 nanoplates at the expense of ultrasmall WSx nanoclusters. Interestingly, the sample prepared with a short sulfidation time, which was mainly comprised of WSx nanoclusters, showed higher HER activity compared to the sample prepared with a prolonged sulfidation time, which mostly contained WS2 nanoplates. The higher HER activity of WSx nanoclusters is attributed to the larger density of active bridging S22- sites, compared to the WS2 nanoplates. These findings may provide important insights into the growth behaviour of layered TMD materials at the nanoscale, as well as potential active species in WSx for the HER.

20.
Nano Lett ; 17(4): 2220-2228, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28338328

ABSTRACT

Facile/sustainable utilization of sulfur active materials is an ultimate challenge in high-performance lithium-sulfur (Li-S) batteries. Here, as a membrane-driven approach to address this issue, we demonstrate a new class of polysulfide-breathing (capable of reversibly adsorbing and desorbing polysulfides)/dual (electron and ion) conductive, heterolayered battery separator membranes (denoted as "MEC-AA separators") based on 0D (nanoparticles)/1D (nanofibers) composite mats. The MEC-AA separator is fabricated through an in-series, concurrent electrospraying/electrospinning process. The top layer of the MEC-AA separator comprises close-packed mesoporous MCM-41 nanoparticles spatially besieged by multiwalled carbon nanotubes (MWNT) wrapped poly(ether imide) (PEI) nanofibers. The MCM-41 in the top layer shows reversible adsorption/desorption of polysulfides, and the MWNT-wrapped PEI nanofibers act as a dual-conductive upper current collector. Preferential deposition of the MWNTs along the PEI nanofibers and dispersion state of the separator components are elucidated theoretically using computational methods. The support layer, which consists of densely packed Al2O3 nanoparticles and polyacrylonitrile nanofibers, serves as a mechanically/thermally stable and polysulfide-capturing porous membrane. The unique structure and multifunctionality of the MEC-AA separator allow for substantial improvements in redox reaction kinetics and cycling performance of Li-S cells far beyond those achievable with conventional polyolefin separators. The heterolayered nanomat-based membrane strategy opens a new route toward electrochemically active/permselective advanced battery separators.

SELECTION OF CITATIONS
SEARCH DETAIL
...