Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Environ Sci Technol ; 57(48): 19902-19911, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37983372

ABSTRACT

As global demands for rare-earth elements (REEs) continue to grow, the biological recovery of REEs has been explored as a promising strategy, driven by potential economic and environmental benefits. It is known that calcium-binding domains, including helix-loop-helix EF hands and repeats-in-toxin (RTX) domains, can bind lanthanide ions due to their similar ionic radii and coordination preference to calcium. Recently, the lanmodulin protein from Methylorubrum extorquens was reported, which has evolved a high affinity for lanthanide ions over calcium. Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile, which has been explored for use in bioleaching for metal recovery. In this report, A. ferrooxidans was engineered for the recombinant intracellular expression of lanmodulin. In addition, an RTX domain from the adenylate cyclase protein of Bordetella pertussis, which has previously been shown to bind Tb3+, was expressed periplasmically via fusion with the endogenous rusticyanin protein. The binding of lanthanides (Tb3+, Pr3+, Nd3+, and La3+) was improved by up to 4-fold for cells expressing lanmodulin and 13-fold for cells expressing the RTX domains in both pure and mixed metal solutions. Interestingly, the presence of lanthanides in the growth media enhanced protein expression, likely by influencing protein stability. Both engineered cell lines exhibited higher recoveries and selectivities for four tested lanthanides (Tb3+, Pr3+, Nd3+, and La3+) over non-REEs (Fe2+ and Co2+) in a synthetic magnet leachate, demonstrating the potential of these new strains for future REE reclamation and recycling applications.


Subject(s)
Acidithiobacillus , Lanthanoid Series Elements , Metals, Rare Earth , Calcium/metabolism , Acidithiobacillus/genetics , Acidithiobacillus/chemistry , Acidithiobacillus/metabolism , Lanthanoid Series Elements/metabolism , Ions/metabolism
2.
Front Public Health ; 11: 1250512, 2023.
Article in English | MEDLINE | ID: mdl-37727611

ABSTRACT

Background: Healthcare workers have been identified as being at risk of occupational voice disorders. Among them, nurses working in intensive care units (ICUs) are particularly vulnerable due to the risk factors that are associated with their exposure to high levels of noise. Thus, this study aimed to determine the prevalence of voice disorders among ICU nurses. Methods: A questionnaire was administered to 100 ICU nurses from four hospitals in China. The questionnaire assessed vocal-related symptoms, perceived voice handicap, frequently heard noise sources, and the quality of communications. Results: Results indicate that the most frequently reported voice symptoms were 'voice tiredness' and 'voiceless'. Nurses working more than 50 h per week experienced voice symptoms more frequently than nurses working for 40-50 h per week. The median value of the perceived voice handicap score (VHI-30) was 23, indicating mild voice handicap, while 24% of the nurses reported severe voice handicap. Longer working hours and working at patient wards were significantly associated with higher VHI-30 scores. The nurses also reported that the quality of verbal communication with patients and colleagues and voice problems worsened during the COVID-19 pandemic. Conclusion: More than 20% of nurses reported severe voice handicap, however, voice handicap among ICU nurses did not appear universally to all nurses. Further research is necessary to identify the risk factors associated with voice disorders and the mechanism behind such heterogeneity among ICU nurses.


Subject(s)
COVID-19 , Noise, Occupational , Nurses , Occupational Diseases , Voice Disorders , Humans , Noise, Occupational/adverse effects , Pandemics , Prevalence , COVID-19/epidemiology , Voice Disorders/epidemiology , Voice Disorders/etiology , Intensive Care Units , Occupational Diseases/epidemiology
3.
iScience ; 26(9): 107504, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37636045

ABSTRACT

Electric syntrophy between fatty acid oxidizers and methanogens through direct interspecies electron transfer (DIET) is essential for balancing acidogenesis and methanogenesis in anaerobic digestion. Promoting DIET using electrically conductive additives proved effective in enhancing methanogenesis; however, its possibility to affect other microbial redox reactions in methanogenic systems has been little studied. This study provides the first confirmation of the electro-syntrophic coupling of sulfide oxidation to S0 with CO2-reducing methanogenesis in sulfur-rich methanogenic cultures supplemented with conductive magnetite (100-700-nm particle size). The H2S content in biogas, initially exceeding 5000 ppmv, decreased to below 1 ppmv along with an accumulation of extracellular S0 (60-70 mg/L; initially <1 mg/L) at a magnetite dose of 20 mM Fe, while there were no significant changes in methane yield. A comprehensive polyphasic approach demonstrated that the S0 formation occurs through electro-syntrophic oxidation of sulfide coupled with CO2-reducing methanogenesis, involving Methanothrix as the dominant methanogen.

4.
Environ Pollut ; 335: 122283, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37517639

ABSTRACT

As the importance of non-tailpipe particles (NTP) over tailpipe emissions from urban traffic has been increasing, there is a need to evaluate NTP contributions to ambient particulate matter (PM) using representative source profiles. The Brake and Tire Wear Study conducted in Los Angeles, California in the winter of 2020 collected 64 PM2.5 and 64 PM10 samples from 32 pairs of downwind-upwind measurements at two near-road locations (I-5 in Anaheim and I-710 in Long Beach). These samples were characterized for inorganic and organic markers and, along with locally-developed brake wear, tire wear, and road dust source profiles, subject to source apportionment using the effective-variance chemical mass balance (EV-CMB) model. Model results highlighted the dominance of resuspended dust in both PM2.5 (23-33%) and PM10 (32-53%). Brake and tire wear contributed more to PM2.5 than tailpipe exhausts (diesel + gasoline) for I-5 (29-30% vs. 19-21%) while they were comparable for I-710 (15-17% vs. 15-19%). For PM10, the brake and tire wear contributions were 2-3 times the exhaust contributions. Different fleet compositions on and near I-5 and I-710 appeared to influence the relative importance of NTP and exhaust sources. The downwind-upwind differences in source contributions were often insignificant, consistent with small and/or nearly equal impacts of adjacent highway traffic emissions on the downwind and upwind sites. The utility of sole markers, such as barium and zinc, to predict brake and tire wear abundances in ambient PM is evaluated.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Environmental Monitoring , Particulate Matter/analysis , Vehicle Emissions/analysis , Dust
5.
Environ Pollut ; 333: 121996, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37336347

ABSTRACT

Buildings are often located near ambient air pollution sources such as wildfire or heavy traffic areas. While windows in buildings are intermittently open for free cooling or natural ventilation, increased leakage area can lead to elevated human exposure to air pollutants of outdoor origin. The objective of this study is to investigate the effectiveness of paper filter windows in reducing exposure to outdoor air pollution and improving indoor air quality. The physical properties of paper windows as filtration media were experimentally determined, based on which multi-zone indoor air quality and ventilation analysis (CONTAM) simulations were performed for a full-scale building. The results show that the outdoor-indoor air exchange rate of a building can increase about 100% when conventional windows are replaced with paper filter windows. Even with the increased air exchange rate, the infiltration of outdoor particles into the building was reduced about 57-77% for the particle size range of 7-300 nm. These findings imply that paper windows have potential benefits for controlling both outdoor originated pollutants and indoor-generated pollutants with minimal energy inputs, especially in cities and communities impacted by urban air pollution and wildfires.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Humans , Environmental Monitoring , Air Pollution/analysis , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Particle Size , Particulate Matter/analysis
6.
Water Res ; 240: 120085, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37244016

ABSTRACT

Membrane-based wastewater reclamation is used to mitigate water scarcity; however, irreversible biofouling is an elusive problem that hinders the efficiency of a forward-osmosis (FO) membrane-based process, and the protein responsible for fouling is unknown. Herein, we identified fouling proteins by analyzing the microbiome and proteome of wastewater extracellular polymeric substances responsible for strong irreversible FO-membrane fouling. The IGLSSLPR peptide of a PilZ domain-containing protein was found to recruit bacterial attachment when immobilized on the membrane surface while suppressing it when dissolved, in a similar manner to the Arg-Gly-Asp (RGD) peptide in mammalian cell cultures. Bacteria adhere to IGLSSLPR and poly-l-lysine-coated membranes with similar energies and exhibit water fluxes that decline similarly, which is ascribable to interaction as strong as electrostatic interactions in the peptide-coated membranes. We conclude that IGLSSLPR is the key domain responsible for membrane fouling and can be used to develop antifouling technology against bacteria, which is similar to the current usage of RGD peptide in mammalian cell cultures.


Subject(s)
Biofouling , Water Purification , Wastewater , Biofouling/prevention & control , Membranes, Artificial , Peptides , Osmosis , Bacteria
7.
J Air Waste Manag Assoc ; 73(7): 568-577, 2023 07.
Article in English | MEDLINE | ID: mdl-37093027

ABSTRACT

Tailpipe PM (particulate matter) emissions have been reduced due to decades of tightening regulations, however non-tailpipe PM emissions are not regulated and are expected to become a significant source of traffic-related PM emissions. Previous studies have focused on emission measurement from laboratory and track tests. Their findings suggest brake wear PM emission rates are dependent on brake activity. Therefore, it is important to characterize brake emissions by first understanding the real-world brake activity from many different vehicle vocations and driving conditions. The goal of the current study is to establish a test method and analysis for brake activity measurements of heavy-duty vehicles. In this study, brake fluid pressure and brake pad temperature were measured for a heavy-duty vehicle during chassis and on-road driving tests. The chassis tests consisted of the Central Business District (CBD) cycle representative of a repetitive stop-and-go driving pattern of a bus, and the Urban Dynamometer Driving Schedule (UDDS) cycle representative of urban driving conditions of heavy-duty vehicles. The on-road tests consisted of a local Riverside City route focused on urban roads at low vehicle speeds with frequent braking, while the second route from Riverside City to Victorville focused on highway driving and downhill braking. The brake pad temperature of the triplicate CBD cycle gradually increased linearly with a slope of 2.3°C/min and the temperature per kinetic energy lost during braking increased by 2.3 × 10-5°C/J for the CBD cycle. The UDDS cycles had the largest kinetic energy loss between 3.2 × 103 to 3.0 × 105 J in the histogram. The local Riverside city route brake temperature increased by 2.0°C/min. The kinetic energy loss for the on-road tests were one order of magnitude larger than that of the dynamometer tests due to brake events occurring under higher speeds.Implications: The non-tailpipe source contributions to traffic related particulate matter (PM) emissions have surpassed that of tailpipe emissions. The results of this work provide a measurement method to obtain brake activity information for a heavy-duty vehicle, which is critical estimating emission inventory accurately.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Vehicle Emissions/analysis , Environmental Monitoring , Particulate Matter/analysis , Cities , Motor Vehicles
8.
Sci Total Environ ; 883: 163561, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37088393

ABSTRACT

Traffic related non-tailpipe particulate matter emissions can rival the continuously decreasing tailpipe emissions in modern fleets. Non-tailpipe emissions have become the dominating source of traffic emissions in California already. This study measured ambient PM2.5 and PM10 concentrations at near road environments for two major highways in California, I-5 in Anaheim and I-710 in Long Beach. A total of 51 elements were measured from filter samples collected over four-hour intervals for a two-week period in the winter of 2020 before the statewide lockdown by the COVID-19 pandemic. Iron was the most abundant element in ΔPM10 (differences between downwind and upwind sites), contributing to 30 % and 24 % of total measured elements in ΔPM10 at the I-5 and I-710 locations, respectively. Iron correlated highly with other brake wear markers (e.g., titanium, copper, barium, manganese, and zirconium) with coefficient of determination (r2) ranging from 0.67 to 0.90 in both PM2.5 and PM10. Silicon was the second most abundant element, contributing to 21 % of total measured elements in ΔPM2.5 and ΔPM10. Silicon showed strong correlations with crustal elements such as calcium (r2 = 0.90), aluminum (r2 = 0.96), and potassium (r2 = 0.72) in ΔPM2.5, and the correlations were even higher in ΔPM10. Barium had a weak correlation with zinc, a commonly used maker for tire wear, with r2 = 0.63 and r2 = 0.11 for ΔPM10 at the I-5 and I-710 locations respectively. Barium showed a positive correlation with crosswind speed and could serve as a good brake wear PM marker. Hourly PM2.5 concentrations of iron and zinc showed cyclic peaks from 0800 to 1000 h at I-5 during weekdays. Particle mass distributions showed peaks near ~7 µm, while particle number distributions showed peaks near 2.1 µm and 6.5 µm, respectively. This is consistent with brake wear and road dust size ranges previously reported.

9.
Biotechnol Rep (Amst) ; 38: e00789, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36923508

ABSTRACT

Cell adhesion is generally a prerequisite to the microbial bioleaching of sulfide minerals, and surface biofilm formation is modulated via quorum sensing (QS) communication. We explored the impact of the overexpression of endogenous QS machinery on the covellite bioleaching capabilities of Acidithiobacillus ferrooxidans, a representative acidophilic chemolithoautotrophic bacterium. Cells were engineered to overexpress the endogenous qs-I operon or just the afeI gene under control of the tac promoter. Both strains exhibited increased transcriptional gene expression of afeI and improved cell adhesion to covellite, including increased production of extracellular polymeric substances and increased biofilm formation. Under low iron conditions, the improved bioleaching of covellite was more evident when afeI was overexpressed alone as compared to the native operon. These observations demonstrate the potential for the genetic modulation of QS as a mechanism for increasing the bioleaching efficiency of covellite, and potentially other copper sulfide minerals.

10.
ChemistryOpen ; 12(1): e202200196, 2023 01.
Article in English | MEDLINE | ID: mdl-36599689

ABSTRACT

A hydrometallurgical process is developed to lower the costs of copper production and thereby sustain the use of copper throughout the global transition to renewable energy technologies. The unique feature of the hydrometallurgical process is the reductive treatment of chalcopyrite, which is in contrast to the oxidative treatment more commonly pursued in the literature. Chalcopyrite reduction by chromium(II) ion is described for the first time and superior kinetics are shown. At high concentrate loadings of 39, 78, and 117 g L-1 , chalcopyrite reacted completely within minutes at room temperature and pressure. The XRD, SEM-EDS, and XPS measurements indicate that chalcopyrite reacts to form copper(I) chloride (CuCl). After the reductive treatment, the mineral products are leached by iron(III) sulfate to demonstrate the complete extraction of copper. The chromium(II) ion may be regenerated by an electrolysis unit inspired by an iron chromium flow battery in a practical industrial process.


Subject(s)
Chlorides , Copper , Ferric Compounds , Chromium , Iron
11.
Environ Pollut ; 317: 120691, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36435278

ABSTRACT

Particulate Matter (PM) concentrations near highways are influenced by vehicle tailpipe and non-tailpipe emissions, other emission sources, and urban background aerosols. This study collected PM2.5 and PM10 filter samples near two southern California highways (I-5 and I-710) over two weeks in winter 2020. Samples were analyzed for chemical source markers. Mean PM2.5 and PM10 concentrations were approximately 10-15 and 30 µg/m3, respectively. Organic matter, mineral dust, and elemental carbon (EC) were the most abundant PM components. EC and polycyclic aromatic hydrocarbons at I-710 were 19-26% and 47% higher than those at the I-5 sites, respectively, likely due to a larger proportion of diesel vehicles. High correlations were found for elements with common sources, such as markers for brake wear (e.g., Fe, Ba, Cu, and Zr) and road dust (e.g., Al, Si, Ca, and Mn). Based on rubber abundances, the contributions of tire tread particles to PM2.5 and PM10 mass were approximately 8.0% at I-5 and 5.5% at I-710. Two different tire brands showed significantly different Si, Zn, carbon, and natural rubber abundances.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Vehicle Emissions/analysis , Environmental Monitoring , Dust/analysis , California , Particle Size
13.
Sci Total Environ ; 851(Pt 1): 158181, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35988598

ABSTRACT

This study reports enhancement in the electrostatic precipitation (ESP) of diesel engine exhaust particulates using high voltage nanosecond pulse discharge in conjunction with a negative direct current (DC) bias voltage. The high voltage (20 kV) nanosecond pulses produce ion densities that are several orders of magnitude higher than those in the corona produced by a standard DC-only ESP. This plasma-enhanced electrostatic precipitator (PE-ESP) demonstrated 95 % remediation of PM and consumes less than 1 % of the engine power (i.e., 37 kW diesel engine at 75 % load). While the DC-only ESP remediation increases linearly with applied voltage, the plasma-enhanced ESP remains approximately constant over the applied range of negative DC biases. Numerical simulations of the PE-ESP process agree with the DC-only experimental results and enable us to verify the charge-based mechanism of enhancement provided by the nanosecond high voltage pulse plasma. Two different reactor configurations with different flow rates yielded the same remediation values despite one having half the flow rate of the other. This indicates that the reactor can be made even smaller without sacrificing performance. Here, this study finds that the plasma enhancement enables high remediation values at low DC voltages and smaller ESP reactors to be made with high remediation.


Subject(s)
Air Pollutants , Vehicle Emissions , Air Pollutants/analysis , Particulate Matter/analysis , Static Electricity , Vehicle Emissions/analysis
14.
Environ Sci Process Impacts ; 24(10): 1725-1734, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-35938535

ABSTRACT

This paper investigates the effects of ionizers on the ozone concentration within vehicle cabins by using a series of measurements combined with a kinetic box model. Testing consisted of measuring ozone concentration during static tests where the ventilation of the test vehicle was turned on and off depending on the test. This testing was repeated for three different portable ionizers and two vehicles with built-in ionizers. Ionizer A produced ozone at a rate of ∼0.04 ppb s-1 (∼0.68 mg h-1), which increased the in-cabin O3 concentrations of a Mitsubishi Mirage to ∼10 ppb with the fan off and ∼6 ppb in the recirculation mode. In the fresh air mode, in-cabin O3 concentrations were dominated by outdoor-to-indoor transport. Ionizer B and C produced O3 at a rate of less than 0.008 ppb s-1 (<0.14 mg h-1); however, during retesting, ionizer C was shown to emit large amounts of ozone for short amounts of time while being tested up close. The same testing was completed on vehicles with built-in ionizers; these produced <0.01 ppb s-1 (<0.32 mg h-1 in the Buick Enclave and <0.25 mg h-1 in the Hyundai Genesis), and in-cabin O3 concentrations were again dominated by outdoor-to-indoor transport with fresh air ventilation. While ionizers are currently regulated, the negative impact they have on in cabin air quality is important to continue monitoring.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Ozone , Ozone/analysis , Ventilation , Air Pollutants/analysis , Air Pollution, Indoor/analysis
15.
ACS Appl Mater Interfaces ; 14(8): 10125-10133, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35170950

ABSTRACT

Metal processing using microorganisms has many advantages including the potential for reduced environmental impacts as compared to conventional technologies.Acidithiobacillus ferrooxidansis an iron- and sulfur-oxidizing chemolithoautotroph that is known to participate in metal bioleaching, and its metabolic capabilities have been exploited for industrial-scale copper and gold biomining. In addition to bioleaching, microorganisms could also be engineered for selective metal binding, enabling new opportunities for metal bioseparation and recovery. Here, we explored the ability of polyhistidine (polyHis) tags appended to two recombinantly expressed endogenous proteins to enhance the metal binding capacity of A. ferrooxidans. The genetically engineered cells achieved enhanced cobalt and copper binding capacities, and the Langmuir isotherm captures their interaction behavior with these divalent metals. Additionally, the cellular localization of the recombinant proteins correlated with kinetic modeling of the binding interactions, where the outer membrane-associated polyHis-tagged licanantase peptide bound the metals faster than the periplasmically expressed polyHis-tagged rusticyanin protein. The selectivity of the polyHis sequences for cobalt over copper from mixed metal solutions suggests potential utility in practical applications, and further engineering could be used to create metal-selective bioleaching microorganisms.


Subject(s)
Acidithiobacillus , Membrane Proteins , Acidithiobacillus/chemistry , Acidithiobacillus/genetics , Acidithiobacillus/metabolism , Cations, Divalent , Copper/metabolism , Histidine , Membrane Proteins/metabolism
16.
J Air Waste Manag Assoc ; 72(2): 202-209, 2022 02.
Article in English | MEDLINE | ID: mdl-34096829

ABSTRACT

Total emissions from all sources need to be accurately quantified in an emission inventory in order for a basin to develop their air pollution management plan. The best approach is to measure both the real-world emissions and activity for a source; however, often only emissions are measured and activity is estimated from historical factors. This report focuses on harbor craft and presents data showing that using measured emissions and historical factors for activity will lead to inaccurate emission contributions. In this research, real-world activity data were collected from the engine control module (ECM) and from a surrogate method that relied on exhaust temperature. Measured real-world activity values from 10 harbor craft were compared with historical values found in the certification cycle. The vessels included four tugboats, three pilot boats, two police boats, and one supply vessel. The results showed the activity values used in the certification cycle did not reflect the real-world activity of the 10 harbor craft vessels. On average, real-world NOx emissions were only 46% of the NOx emissions estimated by ISO 8178-E3 weighting factor. In contrast, inclusion of significantly lower load factors leads to 31% higher in-use NOx emission factors on average. CARB/EPA load factor ranges from 0.45 to 0.51 while in-use load factor ranged from 0.14 to 0.44. From this finding, researchers are cautioned about accepting the activity values in a certification test cycle, like ISO 8178 E3, and instead should measure real world activity data. This change would improve the accuracy of the emission contribution from harbor craft to the local inventory.Implications: Real-world measurements of activity and emissions are the best way to get an accurate emission contribution to emission inventory. This paper reports on the differences between the use of the traditional certification cycle and real-world activity of harbor craft. Engine control module (ECM) and exhaust temperature data from 10 harbor crafts with different types of operation were used to compare real-world activity data to certification cycle.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Ships , Vehicle Emissions/analysis
17.
Trends Biotechnol ; 40(6): 677-692, 2022 06.
Article in English | MEDLINE | ID: mdl-34794837

ABSTRACT

There are several natural and anthropomorphic environments where iron- and/or sulfur-oxidizing bacteria thrive in extremely acidic conditions. These acidophilic chemolithautotrophs play important roles in biogeochemical iron and sulfur cycles, are critical catalysts for industrial metal bioleaching operations, and have underexplored potential in future biotechnological applications. However, their unique growth conditions complicate the development of genetic techniques. Over the past few decades genetic tools have been successfully developed for Acidithiobacillus ferrooxidans, which serves as a model organism that exhibits both iron- and sulfur-oxidizing capabilities. Conjugal transfer of plasmids has enabled gene overexpression, gene knockouts, and some preliminary metabolic engineering. We highlight the development of genetic systems and recent genetic engineering of A. ferrooxidans, and discuss future perspectives.


Subject(s)
Acidithiobacillus , Acidithiobacillus/genetics , Acidithiobacillus/metabolism , Iron/metabolism , Metabolic Engineering , Oxidation-Reduction , Sulfur/metabolism
18.
J Cogn Neurosci ; 34(3): 381-396, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34942643

ABSTRACT

Functions in higher-order brain regions are the source of extensive debate. Past trends have been to describe the brain in terms of a set of functional modules, especially posterior cortical areas, but a new emerging paradigm focuses on interactions between neighboring representations. In this review, we synthesize emerging evidence that a variety of novel functions in the higher-order brain regions are due to convergence. Convergence of macroscale gradients brings feature-rich representations into close proximity, presenting an opportunity for novel functions to arise. Using the TPJ as an example, we demonstrate that convergent areas have three properties, they: (1) are at the peak of the processing hierarchy, (2) combine the most abstracted representations, and (3) are equidistant from other convergent areas. As information moves from primary sensory cortices to higher-order brain regions, it becomes abstracted and hierarchical. Eventually, these processing gradients converge at a point equally and maximally distant from their sensory origins. This convergence, which produces multifaceted cognitive functions, such as mentalizing another person's thoughts or projecting into a future space, parallels evolutionary and developmental characteristics of such regions, resulting in new cognitive and affective faculties.


Subject(s)
Brain Mapping , Cognition , Brain/diagnostic imaging , Humans
20.
Sci Rep ; 11(1): 14030, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234157

ABSTRACT

Because it is important to develop new sustainable sources of edible protein, insects have been recommended as a new protein source. This study applied Life Cycle Assessment (LCA) to investigate the environmental impact of small-scale edible insect production unit in South Korea. IMPACT 2002 + was applied as the baseline impact assessment (IA) methodology. The CML-IA baseline, EDIP 2003, EDP 2013, ILCD 2011 Midpoint, and ReCiPe midpoint IA methodologies were also used for LCIA methodology sensitivity analysis. The protein, fat contents, and fatty acid profile of the investigated insect (Protaetia brevitarsis seulensis larvae) were analyzed to determine its potential food application. The results revealed that the studied edible insect production system has beneficial environmental effects on various impact categories (ICs), i.e., land occupation, mineral extraction, aquatic and terrestrial ecotoxicity, due to utilization of bio-waste to feed insects. This food production system can mitigate the negative environmental effects of those ICs, but has negative environmental impact on some other ICs such as global warming potential. By managing the consumption of various inputs, edible insects can become an environmentally efficient food production system for human nutrition.


Subject(s)
Animal Proteins, Dietary , Coleoptera/growth & development , Dietary Fats , Edible Insects/growth & development , Life Cycle Stages , Animals , Environment , Nutritive Value , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL
...