Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 4: 7154, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25412648

ABSTRACT

Organic-inorganic hybrid tandem solar cells attract a considerable amount of attention due to their potential for realizing high efficiency photovoltaic devices at a low cost. Here, highly efficient triple-junction (TJ) hybrid tandem solar cells consisting of a double-junction (DJ) amorphous silicon (a-Si) cell and an organic photovoltaic (OPV) rear cell were developed. In order to design the TJ device in a logical manner, a simulation was carried out based on optical absorption and internal quantum efficiency. In the TJ architecture, the high-energy photons were utilized in a more efficient way than in the previously reported a-Si/OPV DJ devices, leading to a significant improvement in the overall efficiency by means of a voltage gain. The interface engineering such as tin-doped In2O3 deposition as an interlayer and its UV-ozone treatment resulted in the further improvement in the performance of the TJ solar cells. As a result, a power conversion efficiency of 7.81% was achieved with an open-circuit voltage of 2.35 V. The wavelength-resolved absorption profile provides deeper insight into the detailed optical response of the TJ hybrid solar cells.

2.
ACS Appl Mater Interfaces ; 6(21): 19191-200, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25296336

ABSTRACT

We demonstrate the localized surface plasmon resonance (LSPR) effect, which can enhance the photovoltaic properties of dye-sensitized solar cells (DSSCs), and the long-term stability of size-controlled plasmonic structures using a noncorrosive redox mediator. Gold nanoparticles (Au NPs) were synthesized with a phase transfer method based on ligand exchange. This synthetic method is advantageous because the uniformly sized Au NPs, can be mass produced and easily applied to DSSC photoanodes. The plasmonic DSSCs showed an 11% improvement of power conversion efficiency due to the incorporation of 0.07 wt % Au NPs, compared to the reference DSSCs without Au NPs. The improved efficiency was primarily due to the enhanced photocurrent generation by LSPR effect. With the cobalt redox mediator, the long-term stability of the plasmonic structures also significantly increased. The plasmonic DSSCs with cobalt(II/III) tris(2,2'-bipyridine) ([Co(bpy)3](2+/3+)) redox mediator maintained the LSPR effect with stable photovoltaic performance for 1000 h. This is, to our knowledge, the first demonstration of the long-term stability of plasmonic nanostructures in plasmonic DSSCs based on liquid electrolytes. As a result, the enhanced long-term stability of plasmonic NPs via a noncorrosive redox mediator will increase the feasibility of plasmonic DSSCs.

3.
Environ Technol ; 34(1-4): 495-502, 2013.
Article in English | MEDLINE | ID: mdl-23530364

ABSTRACT

Chlortetracycline (CTC) is a hazardous material in aquatic environments. This study was focused on optimization of photocatalytic ozonation processes for removal of CTC from wastewater at pH 2.2 and 7.0. In this study, the tested processes for CTC removal were arranged from the least efficient to the most efficient as: UV, UV/TiO2, O3, O3/UV and O3/UV/TiO2. Ozonation efficiency was due to ozone affinity for electron-rich sites on the CTC molecule. In the O3/UV and O3/UV/TiO2 processes, efficiency was increased by the photolysis of CTC and generation of *OH. At pH 7.0, all the processes were more efficient for CTC degradation than at pH 2.2 due to CTC speciation, ozone decay to *OH and the attractions between ionized CTC and TiO2 particles. UV/O3 at pH 7.0 showed an additive effect while other combination processes showed a synergistic effect that resulted in higher rates of reactions than the sums of individual reaction rates. The TOC removal ranged from 8% to 41% after one hour of reaction, with the above-mentioned order of efficiency. The biodegradability increased rapidly during the early minutes of the reaction. A reaction time of 10-15 min was sufficient for near maximum biodegradability, making these processes good pretreatments for the biological processes.


Subject(s)
Chlortetracycline/chemistry , Ozone/chemistry , Photolysis , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Biological Oxygen Demand Analysis , Chlortetracycline/radiation effects , Titanium/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...