Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2948, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37221217

ABSTRACT

Multielectron semiconductor quantum dots (QDs) provide a novel platform to study the Coulomb interaction-driven, spatially localized electron states of Wigner molecules (WMs). Although Wigner-molecularization has been confirmed by real-space imaging and coherent spectroscopy, the open system dynamics of the strongly correlated states with the environment are not yet well understood. Here, we demonstrate efficient control of spin transfer between an artificial three-electron WM and the nuclear environment in a GaAs double QD. A Landau-Zener sweep-based polarization sequence and low-lying anticrossings of spin multiplet states enabled by Wigner-molecularization are utilized. Combined with coherent control of spin states, we achieve control of magnitude, polarity, and site dependence of the nuclear field. We demonstrate that the same level of control cannot be achieved in the non-interacting regime. Thus, we confirm the spin structure of a WM, paving the way for active control of correlated electron states for application in mesoscopic environment engineering.

2.
Nat Commun ; 14(1): 415, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36697407

ABSTRACT

The resemblance between electrons and optical waves has strongly driven the advancement of mesoscopic physics, evidenced by the widespread use of terms such as fermion or electron optics. However, electron waves have yet to be understood in open cavity structures which have provided contemporary optics with rich insight towards non-Hermitian systems and complex interactions between resonance modes. Here, we report the realization of an open cavity resonator in a two-dimensional electronic system. We studied the resonant electron modes within the cavity and resolved the signatures of longitudinal and transverse quantization, showing that the modes are robust despite the cavity being highly coupled to the open background continuum. The transverse modes were investigated by applying a controlled deformation to the cavity, and their spatial distributions were further analyzed using magnetoconductance measurements and numerical simulation. These results lay the groundwork to exploring matter waves in the context of modern optical frameworks.

3.
Phys Rev Lett ; 129(4): 040501, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35939035

ABSTRACT

We report energy-selective tunneling readout-based Hamiltonian parameter estimation of a two-electron spin qubit in a GaAs quantum dot array. Optimization of readout fidelity enables a single-shot measurement time of 16 µs on average, with adaptive initialization and efficient qubit frequency estimation based on real-time Bayesian inference. For qubit operation in a frequency heralded mode, we observe a 40-fold increase in coherence time without resorting to dynamic nuclear polarization. We also demonstrate active frequency feedback with quantum oscillation visibility, single-shot measurement fidelity, and gate fidelity of 97.7%, 99%, and 99.6%, respectively, showcasing the improvements in the overall capabilities of GaAs-based spin qubits. By pushing the sensitivity of the energy-selective tunneling-based spin to charge conversion to the limit, the technique is useful for advanced quantum control protocols such as error mitigation schemes, where fast qubit parameter calibration with a large signal-to-noise ratio is crucial.

4.
Nano Lett ; 21(12): 4999-5005, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34109799

ABSTRACT

We report a single-shot-based projective readout of a semiconductor hybrid qubit formed by three electrons in a GaAs double quantum dot. Voltage-controlled adiabatic transitions between the qubit operations and readout conditions allow high-fidelity mapping of quantum states. We show that a large ratio both in relaxation time vs tunneling time (≈50) and singlet-triplet splitting vs thermal energy (≈20) allows energy-selective tunneling-based spin-to-charge conversion with a readout visibility of ≈92.6%. Combined with ac driving, we demonstrate high visibility coherent Rabi and Ramsey oscillations of a hybrid qubit in GaAs. Further, we discuss the generality of the method for use in other materials, including silicon.

SELECTION OF CITATIONS
SEARCH DETAIL
...