Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(18)2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37765645

ABSTRACT

The escalating presence of pathogenic microbes has spurred a heightened interest in antimicrobial polymer composites tailored for hygiene applications. These innovative composites ingeniously incorporate potent antimicrobial agents such as metals, metal oxides, and carbon derivatives. This integration equips them with the unique ability to offer robust and persistent protection against a diverse array of pathogens. By effectively countering the challenges posed by microbial contamination, these pioneering composites hold the potential to create safer environments and contribute to the advancement of public health on a substantial scale. This review discusses the recent progress of antibacterial polymer composite films with the inclusion of metals, metal oxides, and carbon derivatives, highlighting their antimicrobial activity against various pathogenic microorganisms. Furthermore, the review summarizes the recent developments in antibacterial polymer composites for display coatings, sensors, and multifunctional applications. Through a comprehensive examination of various research studies, this review aims to provide valuable insights into the design, performance, and real-time applications of these smart antimicrobial coatings for interactive devices, thus enhancing their overall user experience and safety. It concludes with an outlook on the future perspectives and challenges of antimicrobial polymer composites and their potential applications across diverse fields.

2.
J Colloid Interface Sci ; 632(Pt A): 151-160, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36413941

ABSTRACT

Bioadhesives derived from biomass are steadily gaining spotlight as substitutes for formaldehyde-based resins in the adhesive industry. However, there is a need to develop novel water-resistant bioadhesives with high adhesive and cohesive strengths because the currently available biomaterial-based adhesives have low mechanical strength. In this study, a complex coacervate was prepared easily by mixing silk fibroin and tannic acid to produce a bioadhesive with high adhesive and cohesive strengths as well as water resistance. The silk fibroin-tannic acid coacervate adhered well to various substrates, and its adhesive strength according to the type of substrate and water contact angle were evaluated comparatively. In particular, the adhesive strength of this adhesive on a wood substrate was systematically analyzed by varying different experimental parameters (relative humidity, surface roughness of the substrate, water stability, and pH). This cost-effective coacervate is applicable as an eco-friendly wood adhesive.


Subject(s)
Adhesives , Fibroins , Wood , Tannins , Water , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...