Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(14): e2308262, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311579

ABSTRACT

Technologies that detect circularly polarized light (CPL), particularly in the UV region, have significant potential for various applications, including bioimaging and optical communication. However, a major challenge in directly sensing CPL arises from the conflicting requirements of planar structures for efficient charge transport and distorted structures for effective interaction with CPL. Here, a novel design of an axially chiral n-type organic semiconductor is presented to surmount the challenge, in which a binaphthyl group results in a high dissymmetry factor at the molecular level, while maintaining excellent electron-transporting characteristics through the naphthalene diimide group. Experimental and computational methods reveal different stacking behaviors in homochiral and heterochiral assemblies, yielding different structures: Nanowires and nanoparticles, respectively. Especially, the homochiral assemblies exhibit effective π-π stacking between naphthalene diimides despite axial chirality. Thus, phototransistors fabricated using enantiomers exhibit a high maximum electron mobility of 0.22 cm2 V-1 s-1 and a detectivity of 3.9 × 1012 Jones, alongside the CPL distinguishing ability with a dissymmetry factor of responsivity of 0.05. Furthermore, the material possesses a wide bandgap, contributing to its excellent visible-blind UV-selective detection. These findings highlight the new strategy for compact CPL detectors, coupled with the demonstration of less-explored n-type and UV region phototransistors.

2.
RSC Adv ; 13(19): 12917-12924, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37114016

ABSTRACT

In this study, the crystallization behavior of polyvinylidene fluoride (PVDF) in NMP/DMF solvent at 9 to 67 weight percent (wt%) was analyzed by molecular dynamics (MD) simulation. The PVDF phase did not gradually change with the incremental increase in PVDF wt%, but displayed rapid shifts at 34 and 50 wt% in both solvents. The solvation behavior between the two solvents was quite identical from the similar radial distribution functions. However, PVDFs in DMF solvent showed a higher ratio of ß phase crystalline structures than those in NMP solvent. It was found that DMF solvents were more tightly packed near trans state PVDF fluorine compared to NMP solvents. Also, NMP oxygen atoms interacted more favorably with gauche state PVDF hydrogen atoms over DMF oxygen atoms. The evaluation of properties observed in atomic scale interactions, such as trans state inhibition and gauche state preference, can be used as indicators in future solvent research.

3.
Polymers (Basel) ; 14(11)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35683973

ABSTRACT

We computationally investigate the conformational behavior, "bridging" chain, between different the phase-separated domains vs "looping" chain on the same domain, for two chain architectures of ABA triblock copolymers, one with a linear architecture (L-TBC) and the other with comb architecture (C-TBC) at various segregation regimes using dissipative particle dynamics (DPD) simulations. The power-law relation between the bridge fraction (Φ) and the interaction parameter (χ) for C-TBC is found to be Φ∼χ-1.6 in the vicinity of the order-disorder transition (χODT), indicating a drastic conversion from the bridge to the loop conformation. When χ further increases, the bridge-loop conversions slow down to have the power law, Φ∼χ-0.18, approaching the theoretical power law Φ∼χ-1/9 predicted in the strong segregation limit. The conformational assessment conducted in the present study can provide a strategy of designing optimal material and processing conditions for triblock copolymer either with linear or comb architecture to be used for thermoplastic elastomer or molecular nanocomposites.

SELECTION OF CITATIONS
SEARCH DETAIL
...