Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Eng Lett ; 14(4): 755-764, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946811

ABSTRACT

The corneal endothelial transplantation involves the transfer and attachment of a single-layered corneal endothelial tissue to the narrow space between the cornea and iris. Given the high risk of damage to the endothelial tissue and surrounding corneal tissues when using sharp instruments inserted externally to apply force during the process, the development of a device capable of transferring corneal endothelial tissue using a magnetic field became necessary. This study aims to develop a magnetic control device for transferring corneal endothelial tissue with attached magnetic particles to the transplant site, validate its appropriate transfer capabilities, and assess its applicability to corneal endothelial transplantation. For this purpose, a magnetic field-generating manipulation device equipped with four electromagnets controlled by a joystick and microcomputer was developed. Through simulated experiments, the strength of the magnetic field and the attraction force on the tissue were predicted, and the actual magnetic field strength was measured for validation. To measure the magnetic transfer force, experiments were conducted by towing corneal endothelial tissue fixed with 6 mg, 12 mg, and 18 mg plastic weights. Subsequently, the tissue's transfer speed was measured after applying continuous and pulsed magnetic fields. The results confirmed the feasibility of tissue transfer using the magnetic control device, and it was observed that pulsed magnetic fields led to faster transfer speeds and easier control compared to continuous magnetic fields. Exploratory animal experiments using rabbits were conducted to simulate real surgical conditions, confirming the feasibility of corneal endothelial tissue transfer and attachment.

SELECTION OF CITATIONS
SEARCH DETAIL
...